【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.
(1)求f( )的值;
(2)求函數(shù)f(x)的單調遞增區(qū)間.
【答案】
(1)解:函數(shù)f(x)=2cos2ωx+2sinωxcosωx=cos2ωx+sin2ωx+1= sin(2ωx+ )+1,
因為f(x)最小正周期為π,所以 =π,解得ω=1,
所以f(x)= sin(2x+ )+1,
f( )= sin( + )+1= (sin cos +cos sin )+1=
(2)解:由2kπ﹣ ≤2x+ ≤2kπ+ ,可得 kπ﹣ ≤x≤kπ+ ,
所以,函數(shù)f(x)的單調遞增區(qū)間為[kπ﹣ ,kπ+ ],k∈Z
【解析】(1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性求得ω的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調性求得函數(shù)f(x)的單調遞增區(qū)間.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數(shù)g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的通項公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項和第三項,設數(shù)列{cn}滿足cn= ,{cn}的前n項和為Sn
(1)求數(shù)列{bn}的通項公式;
(2)是否存在m∈N* , 使得Sm=2017,并說明理由
(3)求Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大。
(2)求sinB+sinC的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com