不等式組
1≤x+y≤3
-1≤x-y≤1
所圍成的平面區(qū)域的面積是
 
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域即可求出面積.
解答: 解:∵不等式組
1≤x+y≤3
-1≤x-y≤1
等價(jià)為
x+y≥1
x+y≤3
x-y≥-1
x-y≤1
,
∴作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則對(duì)應(yīng)的平面區(qū)域?yàn)锳BCD,(為正方形).
其中C(1,0),D(0,1),
∴AB=
2
,
∴正方形ABCD的面積為
2
×
2
=2
,
故答案為:2.
點(diǎn)評(píng):本題主要考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合作出對(duì)應(yīng)的圖象是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不論m取何實(shí)數(shù),直線l:mx+y-1+2m=0恒過(guò)一定點(diǎn),則該定點(diǎn)的坐標(biāo)為( 。
A、(-2,1)
B、(2,-1)
C、(-2,-1)
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=-
1
2
,
1
Sn
+Sn-1=-2(n≥2,n∈N*)

(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表達(dá)式;并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,an=32,Sn=63,
(1)若{an}為公差為11的等差數(shù)列,求a1;
(2)若{an}是以a1=1為首項(xiàng)、公比為q的等比數(shù)列,求q的值,并證明對(duì)任意k∈N+總有:Sk+2+2Sk-3Sk+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

所有終邊在y軸上的角構(gòu)成的集合為{α|α=
 
,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把七進(jìn)制數(shù)305(7)化為十進(jìn)制數(shù),則305(7)=
 
(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列可能是三進(jìn)制數(shù)的是(  )
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=2截直線x-y-1=0所得弦長(zhǎng)為( 。
A、
6
B、
6
2
C、2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在函數(shù)y=sin|x|、y=|sinx|、y=sin(2x+
3
)
、y=cos(2x+
3
)
、y=
1
2
tan2x
中,最小正周期為π的函數(shù)的個(gè)數(shù)為( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案