【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的值;

2)證明函數(shù)存在唯一的極大值點(diǎn),且.

【答案】12)證明見解析

【解析】

1)求導(dǎo),可得11,結(jié)合已知切線方程即可求得,的值;

2)利用導(dǎo)數(shù)可得,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.

1)函數(shù)的定義域?yàn)?/span>,,

1,1,

故曲線在點(diǎn),1處的切線方程為,

又曲線在點(diǎn),1處的切線方程為,

;

2)證明:由(1)知,,則,

,則,易知單調(diào)遞減,

,1,

故存在,使得,

且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,

由于,1,2,

故存在,使得,

且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,

故函數(shù)存在唯一的極大值點(diǎn),且,即

,

,則,

上單調(diào)遞增,

由于,故2,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是兩個(gè)不重合的平面,在下列條件中,可判斷平面平行的是(

A.,是平面內(nèi)兩條直線,且,

B.是兩條異面直線,,,且,

C.內(nèi)不共線的三點(diǎn)到的距離相等

D.,都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;

(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求的最大值與最小值;

(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,橢圓上一點(diǎn)的距離之和為4.過點(diǎn)作直線的垂線交直線于點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)試判斷直線與橢圓公共點(diǎn)的個(gè)數(shù),并說明理由;

3)直線與直線交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位運(yùn)動(dòng)員一起參加賽前培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績中隨機(jī)抽取8次,記錄如下:

甲:82 81 79 78 95 88 93 84

乙:86 85 79 86 84 84 85 91

(Ⅰ)請(qǐng)你運(yùn)用莖葉圖表示這兩組數(shù)據(jù);

(Ⅱ)若用甲8次成績中高于85分的頻率估計(jì)概率,對(duì)甲同學(xué)在今后的3次測(cè)試成績進(jìn)行預(yù)測(cè),記這3次成績中高于85分的次數(shù)為,求的分布列及數(shù)學(xué)期望;

(Ⅲ)現(xiàn)要從中選派一人參加正式比賽,依據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位選手參加較為合適?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單位正方體內(nèi)部或邊界上不共面的四個(gè)點(diǎn)構(gòu)成的四面體體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點(diǎn)M在棱PC上.

(Ⅰ)求證:平面PAB⊥平面PCD;

(Ⅱ)若直線PA// 平面MBD,求此時(shí)直線BP與平面MBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD,底面ABCD為梯形,,,且

1)在PD上是否存在一點(diǎn)F,使得平面PAB,若存在,找出F的位置,若不存在,請(qǐng)說明理由;

2)求二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案