【題目】設(shè)集合.若的非空子集中奇數(shù)的個(gè)數(shù)大于偶數(shù)的個(gè)數(shù),則稱(chēng)是“好的”.試求的所有“好的”子集的個(gè)數(shù)(答案寫(xiě)成最簡(jiǎn)結(jié)果).

【答案】見(jiàn)解析

【解析】

對(duì)分奇、偶兩種情況討論.

(1)當(dāng)為非負(fù)整數(shù)),這時(shí)中奇元素恰比偶元素多一個(gè).設(shè)的任何一個(gè)子集,則中有且只有一個(gè)子集是“好的”,從而的“好子集”的個(gè)數(shù)為.

(2)當(dāng)為正整數(shù)),中奇元素個(gè)數(shù)與偶元素個(gè)數(shù)相等.定義為“壞子集”為當(dāng)且僅當(dāng)中奇元素個(gè)數(shù)小于偶元素的個(gè)數(shù),而定義為“中性子集”(包括空集)為當(dāng)且僅當(dāng)中奇元素個(gè)數(shù)與偶元素個(gè)數(shù)相等.

由對(duì)稱(chēng)性知,的“好子集”個(gè)數(shù)與“壞子集”的個(gè)數(shù)必定相等,所以有

“好子集”個(gè)數(shù)

.

其中公式可證明如下:考慮恒等式兩邊中項(xiàng)的系數(shù),由二項(xiàng)式定理知,左邊式中項(xiàng)的系數(shù)是,而右邊式中的系數(shù)是,故得恒等式.

本題答案可統(tǒng)一地寫(xiě)為

其中是不大于的最大整數(shù)).

注:由恒等式可得組合恒等式:

(注意當(dāng)時(shí),).這種利用模型來(lái)建立和證明組合恒等式的方法(叫做“模型法”)在組合數(shù)學(xué)中是很常用的,也很重要,應(yīng)該熟悉進(jìn)而掌握它.如果個(gè)奇數(shù)和個(gè)偶數(shù)組成,那么的“好子集”個(gè)數(shù)又為多少呢?請(qǐng)讀者自己考慮之.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

1)求的值;

2)若函數(shù)的圖象在直線上方,求的取值范圍;

3)若函數(shù),,是否存在實(shí)數(shù)使得的最小值為?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).

1 的值

2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在研究函數(shù)時(shí),給出下面幾個(gè)結(jié)論:

①等式對(duì)恒成立;

②函數(shù)的值域?yàn)?/span>

③若,則一定;

④對(duì)任意的,若函數(shù)恒成立,則當(dāng)時(shí),

其中正確的結(jié)論是____________(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)從甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的眾數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求平面直角坐標(biāo)系中格點(diǎn)凸五邊形(即每個(gè)頂點(diǎn)的縱橫坐標(biāo)都是整數(shù)的凸五邊形)的周長(zhǎng)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是的中點(diǎn).

)求異面直線所成角的余弦值.

)在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上異于頂點(diǎn)的任意一點(diǎn),過(guò)的直線于另一點(diǎn),交軸正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形.

1)求的方程;

2)若直線,且相切于點(diǎn),試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則均為假命題

④對(duì)于命題,,則為:

其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案