【題目】某同學(xué)在研究函數(shù)時,給出下面幾個結(jié)論:
①等式對恒成立;
②函數(shù)的值域為;
③若,則一定;
④對任意的,若函數(shù)恒成立,則當時,或.
其中正確的結(jié)論是____________(寫出所有正確結(jié)論的序號).
【答案】①②③
【解析】
①由函數(shù)是奇函數(shù)可判定①正確,②分別討論和奇函數(shù)的性質(zhì)可知②正確.③因為為增函數(shù),故③正確.利用表達式恒成立轉(zhuǎn)化為函數(shù)最值恒成立,再解不等式即可判定④錯誤.
①因為,定義域為,且,
故函數(shù)為奇函數(shù),
所以對恒成立,故①正確.
②當時,,在為增函數(shù).
且時,.
因為為奇函數(shù),,所以函數(shù)的值域為,故②正確.
③因為函數(shù)為增函數(shù),
所以,則一定,故③正確.
④對于任意,數(shù)為增函數(shù),.
要使恒成立,
即,即.
設(shè),
因為,則,
解得:或或.故④錯.
故答案為:①②③
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊多邊形的花園,它的水平放置的平面圖形的斜二測直觀圖是如圖所示的直角梯形,其中,米,,則這塊花園的面積為______平方米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,函數(shù)恰有兩個不同的零點,求實數(shù)的值;
(2)當時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,角的頂點與坐標原點重合,始邊與軸非負半軸重合,終邊經(jīng)過點,且.
(Ⅰ)若點的坐標為,求的值;
(Ⅱ)若點為線性約束條件所圍成的平面區(qū)域上的一個動點,試確定角的取值范圍,并求函數(shù)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點,F是DC上的點且DF=AB,PH為△PAD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合.若的非空子集中奇數(shù)的個數(shù)大于偶數(shù)的個數(shù),則稱是“好的”.試求的所有“好的”子集的個數(shù)(答案寫成最簡結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費總支出的比重.國際上常用恩格爾系數(shù)來衡量一個國家和地區(qū)人民生活水平的狀況.聯(lián)合國對消費水平的規(guī)定標準如下表:
家庭類型 | 貧窮 | 溫飽 | 小康 | 富裕 | 最富裕 |
實施精準扶貧以來,根據(jù)對某山區(qū)貧困家庭消費支出情況(單位:萬元)的抽樣調(diào)查,2018年每個家庭平均消費支出總額為2萬元,其中食物消費支出為1.2萬元預(yù)測2018年到2020年每個家庭平均消費支出總額每年的增長率約是30%,而食物消費支出平均每年增加0.2萬元,預(yù)測該山區(qū)的家庭2020年將處于( )
A.貧困水平B.溫飽水平C.小康水平D.富裕水平
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com