【題目】設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)對(duì)應(yīng).

1)若是關(guān)于的一元二次方程的一個(gè)虛根,且,求實(shí)數(shù)的值;

2)設(shè)復(fù)數(shù)滿足條件(其中、常數(shù)),當(dāng)為奇數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,當(dāng)為偶數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,且兩條曲線都經(jīng)過(guò)點(diǎn),求軌跡的方程;

3)在(2)的條件下,軌跡上存在點(diǎn),使點(diǎn)與點(diǎn)的最小距離不小于,求實(shí)數(shù)的取值范圍.

【答案】1m4;(2C1的方程是:x),C2的方程是:.(3

【解析】

1)由實(shí)系數(shù)方程虛根成對(duì),利用韋達(dá)定理直接求出m的值.

2)方法一:分n為奇數(shù)和偶數(shù),化出a的范圍,聯(lián)立雙曲線方程,求出a值,推出雙曲線方程即可.

方法二:由題意分a的奇偶數(shù),聯(lián)立方程組,求出復(fù)數(shù)β,解出a,根據(jù)雙曲線的定義求出雙曲線方程.

3)設(shè)點(diǎn)A的坐標(biāo),求出|AB|表達(dá)式,根據(jù)x范圍,x的對(duì)稱軸討論,時(shí),|AB|的最小值,不小于,求出實(shí)數(shù)x0的取值范圍.

1β是方程的一個(gè)虛根,則是方程的另一個(gè)虛根,

,所以m4

2)方法1當(dāng)n為奇數(shù)時(shí),| +3||3|2a,常數(shù)),

軌跡C1為雙曲線一支,其方程為xa;

當(dāng)n為偶數(shù)時(shí),| +3|+|3|4a,常數(shù)),

軌跡C2為橢圓,其方程為

依題意得方程組

解得a23,

因?yàn)?/span>,所以

此時(shí)軌跡為C1C2的方程分別是:,x,

方法2:依題意得

軌跡為C1C2都經(jīng)過(guò)點(diǎn),且點(diǎn)對(duì)應(yīng)的復(fù)數(shù)

代入上式得,

對(duì)應(yīng)的軌跡C1是雙曲線,方程為;

對(duì)應(yīng)的軌跡C2是橢圓,方程為

3)由(2)知,軌跡C2,設(shè)點(diǎn)A的坐標(biāo)為(x,y),

,

當(dāng)時(shí),

當(dāng)時(shí),,

綜上

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,.

(1)證明:;

(2)若,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),g(x)(a>0,且a≠1).

(1)求函數(shù)φ(x)f(x)g(x)的定義域;

(2)試確定不等式f(x)≤g(x)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像相交于點(diǎn),兩點(diǎn),若動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;

(3)數(shù)列滿足.

證明:①;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市政府招商引資,為吸引外商,決定第一個(gè)月產(chǎn)品免稅,某外資廠該第一個(gè)月A型產(chǎn)品出廠價(jià)為每件10元,月銷售量為6萬(wàn)件;第二個(gè)月,當(dāng)?shù)卣_(kāi)始對(duì)該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價(jià)就上升到每件元,預(yù)計(jì)月銷售量將減少p萬(wàn)件.

1)將第二個(gè)月政府對(duì)該商品征收的稅收y(萬(wàn)元)表示成p的函數(shù),并指出這個(gè)函數(shù)的定義域;

2)要使第二個(gè)月該廠的稅收不少于1萬(wàn)元,則p的范圍是多少?

3)在第(2)問(wèn)的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)(,.

1)橢圓C的方程;

2)過(guò)點(diǎn)P0,2)的直線交橢圓CA,B兩點(diǎn),求OABO為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線及圓

1)求直線所過(guò)定點(diǎn);

2)求直線被圓截得的最短弦長(zhǎng)及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測(cè),現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評(píng)分的中位數(shù);

2)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再?gòu)倪@5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中恰有一個(gè)一等品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案