【題目】

如圖,在三棱錐, 側(cè)面與側(cè)面均為等邊三角形,中點(diǎn).

)證明:平面

)求二面角的余弦值.

【答案】平面

)二面角的余弦值為

【解析】

證明:

)由題設(shè)AB=AC=SB=SC=SA. 連結(jié)OAABC為等腰直角三角形,所以OA=OB=OC=SA,且AOBC. SBC為等腰三角形,故SOBC,且

SO=SA,

從而OA2+SO2=SA2, ……3

所以SOA為直角三角形,.

AOBC=O,

所以SO平面ABC. ……6

)解法一:

SC中點(diǎn)M, 連結(jié)AM,OM, 由()知, OMSC,AMSC.

為二面角的平面角. ……9

AOBC,AOSO,SOBC

AO平面SBC,

所以AOOM. ,故

所以二面角的余弦值為……12

解法二:

O為坐標(biāo)原點(diǎn),射線OB、OA分別為x軸、y軸的正半軸,建立如圖的空間直角坐標(biāo)系

設(shè)B(1,0,0),則

SC的中點(diǎn)

.

MOSC,MASC等于二面角的平面角. ……9

所以二面角的余弦值為……12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)=|lnx|,若函數(shù)gx)=fx)-ax在區(qū)間(0,4)上有三個零點(diǎn),則實數(shù)a的取值范圍是(

A. (0,B. ,e)C. ,D. (0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某國營企業(yè)集團(tuán)公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了激化內(nèi)部活力,增強(qiáng)企業(yè)競爭力,集團(tuán)公司董事會決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出)名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.

(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則實數(shù)的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為線段上一點(diǎn),的中點(diǎn).

(1)證明:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲箱中裝有3個紅球,2個黑球,乙箱中裝有2個紅球,3個黑球,這些球除顏色外完全相同,某商場舉行有獎促銷活動,規(guī)定顧客購物1000元以上,可以參與抽獎一次,設(shè)獎規(guī)則如下:每次分別從以上兩個箱子中各隨機(jī)摸出2個球,共4個球,若摸出4個球都是紅球,則獲得一等獎,獎金300元;摸出的球中有3個紅球,則獲得二等獎,獎金200元;摸出的球中有2個紅球,則獲得三等獎,獎金100元;其他情況不獲獎,每次摸球結(jié)束后將球放回原箱中.

1)求在1次摸獎中,獲得二等獎的概率;

2)若3人各參與摸獎1次,求獲獎人數(shù)X的數(shù)學(xué)期望;

3)若商場同時還舉行打9折促銷活動,顧客只能在兩項促銷活動中任選一項參與.假若你購買了價值1200元的商品,那么你選擇參與哪一項活動對你有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,某校在高中生中隨機(jī)抽取100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計

男生

40

女生

30

合計

50

100

1)請將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;

3)若在接受調(diào)查的所有男生中按照是否喜歡數(shù)學(xué)進(jìn)行分層抽樣,現(xiàn)隨機(jī)抽取6人,再從6人中抽取3人,求至少有1不喜歡數(shù)學(xué)的概率.

下面的臨界值表供參考:

0.05

0.010

0.005

0.001

k

3.841

6.635

7.879

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若射線與曲線相交于點(diǎn),將逆時針旋轉(zhuǎn)后,與曲線相交于點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費(fèi)用,并公布了相應(yīng)的定額扣除標(biāo)準(zhǔn),決定自2019年1月1日起施行,某機(jī)關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:

40歲及以下

40歲以上

合計

基本滿意

15

30

45

很滿意

25

10

35

合計

40

40

80

(1)根據(jù)列聯(lián)表,能否有99%的把握認(rèn)為滿意程度與年齡有關(guān)?

(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻(xiàn)積分(單位:分)給予相應(yīng)的住房補(bǔ)貼(單位:元),現(xiàn)有兩種補(bǔ)貼方案,方案甲:;方案乙:.已知這8名員工的貢獻(xiàn)積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補(bǔ)貼的員工記為“類員工”.為了解員工對補(bǔ)貼方案的認(rèn)可度,現(xiàn)從這8名員工中隨機(jī)抽取4名進(jìn)行面談,求恰好抽到3名“類員工”的概率。

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案