【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線與曲線相交于點(diǎn),將逆時(shí)針旋轉(zhuǎn)后,與曲線相交于點(diǎn),且,求的值.
【答案】(1);(2)
【解析】
(1)消去曲線參數(shù)方程中的,求得其普通方程,再根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得曲線的極坐標(biāo)方程.利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得的直角坐標(biāo)方程.
(2)將代入的極坐標(biāo)方程,求得的值,然后將曲線的極坐標(biāo)方程,求得的值.根據(jù)列方程,求得的值,進(jìn)而求得的大小.
(1)由曲線的參數(shù)方程為,(為參數(shù)),可得其普通方程,
由,得曲線的極坐標(biāo)方程.
,
由,得曲線的直角坐標(biāo)方程.
(2)將代入,
得.
將逆時(shí)針旋轉(zhuǎn),得的極坐標(biāo)方程為,代入曲線的極坐標(biāo)方程,得.
由,得,.
即,解得.
因?yàn)?/span>,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD為正方形,平面ACD,且,E為PD的中點(diǎn).
(Ⅰ)證明:平面平面PAD;
(Ⅱ)求直線PA與平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在三棱錐中, 側(cè)面與側(cè)面均為等邊三角形,為中點(diǎn).
(Ⅰ)證明:平面
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度月份至月份該型號(hào)電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:
月份 | ||||||
銷售單價(jià)(元) | ||||||
銷售量(千件) |
(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價(jià),才能使該月利潤(rùn)達(dá)到最大(計(jì)算結(jié)果精確到)?
參考公式:回歸直線方程,其中.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個(gè)國(guó)家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開始,我國(guó)關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) | ||||||
被調(diào)查的人數(shù) | ||||||
贊成的人數(shù) |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;
(2)若從年齡在的參與調(diào)查的市民中按照是否贊成“延遲退休”進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再?gòu)倪@10人中隨機(jī)抽取4人參加座談會(huì),記這4人中贊成“延遲退休”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,橢圓,、,為橢圓的左、右頂點(diǎn).
設(shè)為橢圓的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí),取得最小值與最大值.
若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓的標(biāo)準(zhǔn)方程.
若直線與中所述橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且滿足,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com