對于任意實數(shù)x,符號[x]表示“不超過x的最大整數(shù)”,如[-2]=-2,[1.3]=1,[-2.5]=-3,定義函數(shù)f(x)=sin(
π
2
[x]).給出下列四個命題:
①函數(shù)y=f(x)是奇函數(shù);
②函數(shù)y=f(x)的值域是[-1,1];
③函數(shù)y=f(x)是周期函數(shù),且最小正周期為4;
④函數(shù)y=f(x)的圖象與直線y=x-1有三個不同的公共點.
其中真命題的個數(shù)為( 。
A、1個B、2個C、3個D、4個
考點:命題的真假判斷與應用,進行簡單的合情推理
專題:函數(shù)的性質及應用,簡易邏輯
分析:根據(jù)已知分析函數(shù)f(x)=sin(
π
2
[x])的圖象和性質,逐一判斷四個結論的真假,可得結論.
解答: 解:∵函數(shù)f(x)=sin(
π
2
[x]).
∴f(-
1
2
)=sin(-
π
2
)=-1;
f(
1
2
)=sin(0
π
2
)=0.
故①函數(shù)y=f(x)是奇函數(shù),錯誤;
函數(shù)y=f(x)的值域是{-1,0,1},故②錯誤;
函數(shù)y=f(x)是周期函數(shù),且最小正周期為4,故③正確;
函數(shù)y=f(x)的圖象與直線y=x-1有無公共點,故④錯誤.
故真命題的個數(shù)為1個,
故選:A
點評:本題考查的知識點是命題的真假判斷與應用,其中分析出函數(shù)f(x)=sin(
π
2
[x])的圖象和性質,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線3x+
3
y-1=0的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,M、N、Q分別為AB,BB1,C1D1的中點,過M、N、Q的平面與正方體相交截得的圖形是( 。
A、三角形B、四邊形
C、五邊形D、六邊形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓C:ρ=2
2
sin(θ+
π
4
)上到直線l:ρcosθ=2距離為1的點的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,最小正周期為π的偶函數(shù)是(  )
A、y=sin2x
B、y=cos
x
2
C、y=sin2x+cos2x
D、y=
1-tan2x
1+tan2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 f(x)=2x+1,則 f(0)=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施,調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達式;(不要求寫自變量的取值范圍)
(2)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線C的極坐標方程為ρcos(θ-
π
3
)=
1
2
,以極點O為原點,極軸Ox為x的非負半軸,保持單位長度不變建立直角坐標系xOy.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)直線l的參數(shù)方程為
x=-2+tcos60°
y=tsin60°
(t為參數(shù)).若C與l的交點為P,求點P與點A(-2,0)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,且滿足:4a2cosB-2accosB=a2+b2-c2
(1)求角B的大小;
(2)若b=
3
,a+c=3,求S△ABC

查看答案和解析>>

同步練習冊答案