【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn) 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

【答案】(Ⅰ).(Ⅱ),或.

【解析】試題分析:由于為拋物線焦點(diǎn), 到拋物線的準(zhǔn)線的距離為,則,又橢圓的離心率為,求出,得出橢圓的標(biāo)準(zhǔn)方程和拋物線方程;則,設(shè)直線方程為設(shè),解出兩點(diǎn)的坐標(biāo),把直線方程和橢圓方程聯(lián)立解出點(diǎn)坐標(biāo),寫(xiě)出 所在直線方程,求出點(diǎn)的坐標(biāo),最后根據(jù)的面積為解方程求出,得出直線的方程.

試題解析:(Ⅰ)解:設(shè)的坐標(biāo)為.依題意, ,解得, ,于是.

所以,橢圓的方程為,拋物線的方程為.

(Ⅱ)解:設(shè)直線的方程為,與直線的方程聯(lián)立,可得點(diǎn),故.將聯(lián)立,消去,整理得,解得,或.由點(diǎn)異于點(diǎn),可得點(diǎn).由,可學(xué)*科.網(wǎng)得直線的方程為,令,解得,故.所以.又因?yàn)?/span>的面積為,故,整理得,解得,所以.

所以,直線的方程為,或.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某苗圃基地為了解基地內(nèi)甲、乙兩塊地種植的同一種樹(shù)苗的長(zhǎng)勢(shì)情況,從兩塊地各隨機(jī)抽取了10株樹(shù)苗,分別測(cè)出它們的高度如下(單位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 24 26 30 34 37 44 46 47 48
(1)用莖葉圖表示上述兩組數(shù)據(jù),并對(duì)兩塊地抽取樹(shù)苗的高度進(jìn)行比較,寫(xiě)出一個(gè)統(tǒng)計(jì)結(jié)論;
(2)苗圃基地分配這20株樹(shù)苗的栽種任務(wù),小王在苗高大于40cm的5株樹(shù)苗中隨機(jī)的選種2株,則小王沒(méi)有選到甲苗圃樹(shù)苗的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(4,3), =(2,﹣1),O為坐標(biāo)原點(diǎn),P是直線AB上一點(diǎn).
(1)若點(diǎn)P是線段AB的中點(diǎn),求向量 與向量 夾角θ的余弦值;
(2)若點(diǎn)P在線段AB的延長(zhǎng)線上,且| |= | |,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, 為線段的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)若直線與平面所成角的正弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數(shù)列的前10項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點(diǎn).

(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)若函數(shù)處有極小值,求的值;

(Ⅱ)若,設(shè),求證:當(dāng)時(shí),

(Ⅲ)若,對(duì)于給定,其中,若.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二年級(jí)學(xué)生會(huì)有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗(yàn)收活動(dòng)問(wèn)卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF=2,∠CBA=60°.

(1)求證:AN⊥DM;
(2)求直線MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案