【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點(diǎn).

(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.

【答案】
(1)證明: ,∠A1AB=45°,AE=1,故BE⊥AA1

又AA1∥BB1,故BE⊥BB1,又側(cè)面AA1B1B⊥側(cè)面BB1C1C

故BE⊥平面BB1C1C.EF∥AC,AC⊥AA1,EF⊥AA1,

故AA1⊥平面BEF


(2)解:以BF為x軸,BE為y軸,B1B為z軸,建立空間直角坐標(biāo)系.

則E(0,1,0),B1(0,0,﹣2),

平面BEB1的法向量為 (1,0,0),

=(0,﹣1,﹣2), =( ,﹣1,﹣1),

設(shè)平面EB1C1的法向量 =(x,y,z),

,

取y=2,得 =

設(shè)二面角B﹣EB1﹣C1的平面角為θ,

則cosθ= = =

∴二面角B﹣EB1﹣C1的余弦值為


【解析】(1)推導(dǎo)出BE⊥AA1 , BE⊥BB1 , 從而BE⊥平面BB1C1C,由此能證明AA1⊥平面BEF.(2)以BF為x軸,BE為y軸,B1B為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B﹣EB1﹣C1的余弦值.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017江西南昌十所重點(diǎn)二!選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個數(shù);如果沒有,請說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點(diǎn),請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn)。(極值點(diǎn)是指函數(shù)取極值時對應(yīng)的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn), 關(guān)于軸對稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線與橢圓 =1有相同的焦點(diǎn),且與橢圓相交,一個交點(diǎn)A的縱坐標(biāo)為4,求:
(1)雙曲線的標(biāo)準(zhǔn)方程.
(2)若直線L過A(﹣1,2),且與雙曲線漸近線y=kx(k>0)垂直,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為 ,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sinx的圖象上所有點(diǎn)的橫坐標(biāo)都縮小到原來的一半,縱坐標(biāo)保持不變,再把圖象向左平移 個單位,這時對應(yīng)于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.

查看答案和解析>>

同步練習(xí)冊答案