【題目】共享單車(chē)因綠色、環(huán)保、健康的出行方式,在國(guó)內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車(chē)出行”,其他人表示“較少或不選擇騎共享單車(chē)出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車(chē)出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車(chē)出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.

【答案】12見(jiàn)解析

【解析】試題分析:1從這些男士和女士中各抽取一人,至少有一人經(jīng)常騎共享單車(chē)出行為事件,利用概率乘法公式及加法公式得到所求概率;

2的取值為0,1,2,3,明確相應(yīng)的概率值,得到分布列及相應(yīng)的數(shù)學(xué)期望.

試題解析:

1從這些男士和女士中各抽取一人,至少有一人經(jīng)常騎共享單車(chē)出行為事件 .

2顯然的取值為0,1,2,3,

, ,

, ,

故隨機(jī)變量的分布列為

的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了鼓勵(lì)學(xué)生熱心公益,服務(wù)社會(huì),成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學(xué)生提供了4次參加公益活動(dòng)的機(jī)會(huì),學(xué)生可通過(guò)網(wǎng)路平臺(tái)報(bào)名參加活動(dòng).為了解學(xué)生實(shí)際參加這4次活動(dòng)的情況,該校隨機(jī)抽取100名學(xué)生進(jìn)行調(diào)查,數(shù)據(jù)統(tǒng)計(jì)如下表,其中“√”表示參加,“×”表示未參加.

(Ⅰ)從該校所有學(xué)生中任取一人,試估計(jì)其2017年12月恰參加了2次學(xué)校組織的公益活動(dòng)的概率;

(Ⅱ)若在已抽取的100名學(xué)生中,2017年12月恰參加了1次活動(dòng)的學(xué)生比4次活動(dòng)均未參加的學(xué)生多17人,求的值;

(Ⅲ)若學(xué)生參加每次公益活動(dòng)可獲得10個(gè)公益積分,試估計(jì)該校4000名學(xué)生中,2017年12月獲得的公益積分不少于30分的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合,定義了一種運(yùn)算,使得集合中的元素間滿(mǎn)足條件:如果存在元素,使得對(duì)任意,都有,則稱(chēng)元素是集合對(duì)運(yùn)算的單位元素.例如: ,運(yùn)算為普通乘法;存在,使得對(duì)任意,都有,所以元素是集合對(duì)普通乘法的單位元素.

下面給出三個(gè)集合及相應(yīng)的運(yùn)算

,運(yùn)算為普通減法;

{表示階矩陣, },運(yùn)算為矩陣加法;

(其中是任意非空集合),運(yùn)算為求兩個(gè)集合的交集.

其中對(duì)運(yùn)算有單位元素的集合序號(hào)為( )

A. ①②; B. ①③; C. ①②③; D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓柱的母線, 是底面圓的直徑, 的中點(diǎn).

(Ⅰ)問(wèn): 上是否存在點(diǎn)使得平面?請(qǐng)說(shuō)明理由;

(Ⅱ)在(Ⅰ)的條件下,若平面,假設(shè)這個(gè)圓柱是一個(gè)大容器,有條體積可以忽略不計(jì)的小魚(yú)能在容器的任意地方游弋,如果小魚(yú)游到四棱錐外會(huì)有被捕的危險(xiǎn),求小魚(yú)被捕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(1)當(dāng)時(shí),若函數(shù)的圖象在處有相同的切線,求的值;

(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;

(3)當(dāng)時(shí),設(shè)函數(shù)的圖象交于 兩點(diǎn).求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的4倍,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)軸分別交于半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為: 且直線在直角坐標(biāo)系中與軸分別交于兩點(diǎn).

1)寫(xiě)出曲線的參數(shù)方程,直線的普通方程;

2)問(wèn)在曲線上是否存在點(diǎn)使得的面積,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCD,AB=AD=DC=1,

ABC=DCB=60EPC上一點(diǎn).

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形EPC中點(diǎn),求三棱錐AEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓經(jīng)過(guò)為坐標(biāo)原點(diǎn),線段的中點(diǎn)在圓上.

(1)求的方程;

(2)直線不過(guò)曲線的右焦點(diǎn),與交于兩點(diǎn),且與圓相切,切點(diǎn)在第一象限, 的周長(zhǎng)是否為定值?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點(diǎn),且.

(1)證明: 平面;

(2)若點(diǎn)到平面的距離為,且,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案