【題目】設函數(shù), ).

(1)當時,若函數(shù)的圖象在處有相同的切線,求的值;

(2)當時,若對任意和任意,總存在不相等的正實數(shù),使得,求的最小值;

(3)當時,設函數(shù)的圖象交于 兩點.求證: .

【答案】(1)(2)(3)見解析

【解析】試題分析:(1)由導數(shù)幾何意義可得,又,解方程組可得的值;(2)先轉(zhuǎn)化條件為對應方程有兩個不等實根,再根據(jù)實根分布充要條件列不等式組,解得的最小值;(3)先根據(jù)零點表示b,代入要證不等式化簡得.再構(gòu)造函數(shù),以及,結(jié)合導數(shù)研究其單調(diào)性,即證得結(jié)論

試題解析:解:(1)由,得,又,所以,.

時, ,所以,所以.

因為函數(shù)的圖象在處有相同的切線,

所以,即,解得.

(2)當時,則,又,設,

則題意可轉(zhuǎn)化為方程上有相異兩實根

即關于的方程上有相異兩實根

所以,得

所以恒成立.

因為,所以(當且僅當時取等號),

,所以的取值范圍是,所以

的最小值為.

(3)當時,因為函數(shù)的圖象交于兩點,

所以,兩式相減,得.

要證明,即證,

即證,即證.

,則,此時即證

,所以,所以當時,函數(shù)單調(diào)遞增.

,所以,即成立;

再令,所以,所以當時,函數(shù)單調(diào)遞減,

,所以,即也成立.

綜上所述, 實數(shù)滿足.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義域為R的周期函數(shù),最小正周期為2,

f(1x)f(1x),當-1≤x≤0f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[1,2]上的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)Air Pollution Index)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:

大于300

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重

污染

重度污染

天數(shù)

10

15

20

30

7

6

12

(Ⅰ)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有7天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

(Ⅱ)政府要治理污染,決定對某些企業(yè)生產(chǎn)進行管控,當在區(qū)間時企業(yè)正常生產(chǎn)在區(qū)間時對企業(yè)限產(chǎn)(即關閉的產(chǎn)能),當在區(qū)間時對企業(yè)限產(chǎn)300以上時對企業(yè)限產(chǎn),企業(yè)甲是被管控的企業(yè)之一,若企業(yè)甲正常生產(chǎn)一天可得利潤2萬元,若以頻率當概率,不考慮其他因素:

①在這一年中隨意抽取5天,求5天中企業(yè)被限產(chǎn)達到或超過的恰為2天的概率;

②求企業(yè)甲這一年因限產(chǎn)減少的利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的單調(diào)遞增區(qū)間;

(2)在區(qū)間內(nèi)至少存在一個實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,且 .

(Ⅰ)設 ,求的單調(diào)區(qū)間及極值;

(Ⅱ)證明:函數(shù)的圖象在函數(shù)的圖象的上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機構(gòu)在某地區(qū)隨機采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,其焦距為2,離心率為

1)求橢圓的方程;

2)設橢圓的右焦點為 軸上一點,滿足,過點作斜率不為0的直線交橢圓于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線與橢圓交于點, 軸上方),且.設點軸上的射影為,三角形的面積為2(如圖1.

1)求橢圓的方程;

2)設平行于的直線與橢圓相交,其弦的中點為.

①求證:直線的斜率為定值;

②設直線與橢圓相交于兩點軸上方),點為橢圓上異于, , , 一點,直線于點, 于點,如圖2,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點坐標為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點,過點的直線(與軸不重合)與橢圓交于兩點,直線與直線相交于點,試證明:直線軸平行.

查看答案和解析>>

同步練習冊答案