【題目】已知橢圓的一個焦點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn),過點(diǎn)的直線(與軸不重合)與橢圓交于兩點(diǎn),直線與直線相交于點(diǎn),試證明:直線軸平行.

【答案】見解析

【解析】試題分析:(Ⅰ)由題意可知所以,即可得到求橢圓的方程;

(Ⅱ)①當(dāng)直線的斜率不存在時,易證直線軸平行

②當(dāng)直線的斜率存在時,設(shè)直線的方程為 .

因?yàn)辄c(diǎn),所以直線的方程為.

,所以.

消去.顯然恒成立.

所以

這時可證,即.

所以直線 軸.

試題解析:

(Ⅰ)由題意可知所以.所以橢圓的方程為.

(Ⅱ)①當(dāng)直線的斜率不存在時,此時軸.設(shè),直線軸相交于點(diǎn),易得點(diǎn)是點(diǎn)和點(diǎn)的中點(diǎn),又因?yàn)?/span>

所以,所以直線 軸.

②當(dāng)直線的斜率存在時,設(shè)直線的方程為 .

因?yàn)辄c(diǎn),所以直線的方程為.

,所以.

消去.顯然恒成立.

所以

因?yàn)?/span>

所以.

所以直線 軸.

綜上所述,所以直線 軸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ).

(1)當(dāng)時,若函數(shù)的圖象在處有相同的切線,求的值;

(2)當(dāng)時,若對任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;

(3)當(dāng)時,設(shè)函數(shù)的圖象交于 兩點(diǎn).求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)設(shè)是曲線上的一點(diǎn),直線被曲線截得的弦長為,求點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

滿意度評分

低于70

70分到89

不低于90

滿意度等級

不滿意

滿意

非常滿意

記事件C“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級共有1000名學(xué)生,其中男生650人,女生350人,為了調(diào)查學(xué)生周末的休閑方式,用分層抽樣的方法抽查了200名學(xué)生.

)完成下面的列聯(lián)表;

不喜歡運(yùn)動

喜歡運(yùn)動

合計(jì)

女生

50

男生

合計(jì)

100

200

)在抽取的樣本中,調(diào)查喜歡運(yùn)動女生的運(yùn)動時間,發(fā)現(xiàn)她們的運(yùn)動時間介于30分鐘到90分鐘之間,右圖是測量結(jié)果的頻率分布直方圖,若從區(qū)間段的所有女生中隨機(jī)抽取兩名女生,求她們的運(yùn)動時間在同一區(qū)間段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側(cè)棱的中點(diǎn),且.

(1)證明: 平面;

(2)若點(diǎn)到平面的距離為,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn)拋物線上在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為,曲線在點(diǎn)處的切線交軸于點(diǎn)直線經(jīng)過點(diǎn)且垂直于

(Ⅰ)求點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)不經(jīng)過點(diǎn)的動直線交曲線于點(diǎn),于點(diǎn),若直線,的斜率依次成等差數(shù)列試問是否過定點(diǎn)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.

(1)求橢圓的方程;

(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿足直線斜率之積為.試判斷直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時, 的取值范圍是(  )

A. B.

C. [1,3-3] D.

查看答案和解析>>

同步練習(xí)冊答案