(1)在坐標(biāo)系中畫出y=f(x)的圖象。
(2)設(shè)的反函數(shù)為;求數(shù)列的通項(xiàng)公式,并求;
(3)若
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知函數(shù)其中
(1) 當(dāng)時,求曲線處的切線的斜率;
(2) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)其中
(1)證明函數(shù)f(x)的圖像在y軸的一側(cè);
(2)求函數(shù)與的圖像的公共點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).其中.
(1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
(2)若f(x)≤g(x)-1對任意x>0恒成立,求實(shí)數(shù)的值;
(3)當(dāng)<0時,對于函數(shù)h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點(diǎn)A、B連線的斜率為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江寧波四校高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù), 其中.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,求曲線的單調(diào)區(qū)間與極值.
【解析】第一問中利用當(dāng)時,,
,得到切線方程
第二問中,
對a分情況討論,確定單調(diào)性和極值問題。
解: (1) 當(dāng)時,,
………………………….2分
切線方程為: …………………………..5分
(2)
…….7分
分類: 當(dāng)時, 很顯然
的單調(diào)增區(qū)間為: 單調(diào)減區(qū)間: ,
, ………… 11分
當(dāng)時的單調(diào)減區(qū)間: 單調(diào)增區(qū)間: ,
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com