【題目】如圖,正方形ABCD邊長(zhǎng)為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點(diǎn)F,連結(jié)CF并延長(zhǎng)交AB于點(diǎn)E.
(1)求證:AE=EB;
(2)求EFFC的值.
【答案】
(1)證明:由以D為圓心DA為半徑作圓,
而ABCD為正方形,∴EA為圓D的切線
依據(jù)切割線定理,得EA2=EFEC
另外圓O以BC為直徑,∴EB是圓O的切線,
同樣依據(jù)切割線定理得EB2=EFEC
故AE=EB
(2)解:連結(jié)BF,
∵BC為圓O直徑,
∴BF⊥EC
在RT△EBC中,有
又在Rt△BCE中,
由射影定理得EFFC=BF2= .
【解析】(1)由題意得EA為圓D的切線,由切割線定理,得EA2=EFEC,EB2=EFEC,由此能證明AE=EB.(2)連結(jié)BF,得BF⊥EC,在RT△EBC中, ,由射影定理得EFFC=BF2 , 由此能求出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x,y∈R,則(3﹣4y﹣cosx)2+(4+3y+sinx)2的最小值為( )
A.4
B.5
C.16
D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面 平面, 與分別是棱長(zhǎng)為1與2的正三角形, // ,四邊形為直角梯形, // , ,點(diǎn)為的重心, 為中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求證: //平面;
(Ⅱ)若直線與所成角為,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 分別為橢圓的左、右焦點(diǎn),橢圓離心率,直線通過(guò)點(diǎn),且傾斜角是45°.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx(x>0)的圖像與x軸相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在兩個(gè)不等正數(shù)s,t(s<t),當(dāng)x∈[s,t]時(shí),函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知且設(shè),綠地面積為.
(1)寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域.
(2)當(dāng)為何值時(shí),綠地面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為A,B,C所對(duì)邊,a+b=4,(2﹣cosA)tan =sinA.
(1)求邊長(zhǎng)c的值;
(2)若E為AB的中點(diǎn),求線段EC的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸的正半軸上,過(guò)焦點(diǎn)且斜率為的直線與拋物線交于兩點(diǎn),且滿(mǎn)足.
(1)求拋物線的方程;
(2)已知為拋物線上一點(diǎn),若點(diǎn)位于軸下方且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com