【題目】已知,.
(1)當(dāng)時,求證:對于,恒成立;
(2)若存在,使得當(dāng)時,恒有成立,試求k的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)令,利用導(dǎo)數(shù)判斷出的單調(diào)性和單調(diào)區(qū)間,得出的最大值,證明即可;
(2)由(1)易知時顯然不滿足,而時,時,,此時更不可能成立,當(dāng)時,令,通過導(dǎo)數(shù)判斷的單調(diào)性,證得成立即可.
(1)證明:當(dāng)時,
令,,
令,即,解得或(舍).
所以當(dāng)時,,在上單調(diào)遞減.
所以,
所以對于,即.
(2)由(1)知,當(dāng)時,恒成立,即對于,
不存在滿足條件的;
當(dāng)時,對于,,此時,
所以,
即恒成立,不存在滿足條件的;
當(dāng)時,令,,
令,
又為一開口向下的拋物線,且時,,
又,
所以必存在,使得.
所以時,,,單調(diào)遞增;
當(dāng)時,,,單調(diào)遞減.
當(dāng)時,,即恒成立,
綜上,k的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,直線l交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,若k1k2=﹣2,則△AOB面積的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費(fèi)價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點(diǎn).下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是( )
A.CPI一籃子商品中所占權(quán)重最大的是居住
B.CPI一籃子商品中吃穿住所占權(quán)重超過50%
C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%
D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線為平面內(nèi)的動點(diǎn),過點(diǎn)作直線的垂線,垂足為點(diǎn),且.
(1)求動點(diǎn)的軌跡的方程;
(2)過點(diǎn)作兩條互相垂直的直線與分別交軌跡于四點(diǎn).求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐PABC的各頂點(diǎn)都在同一球面上,底面ABC,若,,且,則下列說法正確的是( )
A.是鈍角三角形B.此球的表面積等于
C.平面PACD.三棱錐APBC的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.
(Ⅰ)求直線與曲線公共點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)過點(diǎn)的直線交曲線于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 與相交于點(diǎn),點(diǎn)在線段上,,且平面.
(1)求實(shí)數(shù)的值;
(2)若,, 求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)的拋物線C的焦點(diǎn)與橢圓的上焦點(diǎn)重合,且過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若拋物線上不同兩點(diǎn)A,B作拋物線的切線,兩切線的斜率,若記AB的中點(diǎn)的橫坐標(biāo)為m,AB的弦長,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓過以下4個不同的點(diǎn):.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)先將圓向左平移個單位后,再將所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都伸長到原來的倍得到圓,若兩個點(diǎn)分別在直線和上,為圓上任意一點(diǎn),且(為常數(shù)),證明直線過圓的圓心,并求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com