【題目】新藥在進(jìn)入臨床實(shí)驗(yàn)之前,需要先通過(guò)動(dòng)物進(jìn)行有效性和安全性的實(shí)驗(yàn).現(xiàn)對(duì)某種新藥進(jìn)行5000次動(dòng)物實(shí)驗(yàn),一次實(shí)驗(yàn)方案如下:選取3只白鼠對(duì)藥效進(jìn)行檢驗(yàn),當(dāng)3只白鼠中有2只或2只以上使用“效果明顯”,即確定“實(shí)驗(yàn)成功”;若有且只有1只“效果明顯”,則再取2只白鼠進(jìn)行二次檢驗(yàn),當(dāng)2只白鼠均使用“效果明顯”,即確定“實(shí)驗(yàn)成功”,其余情況則確定“實(shí)驗(yàn)失敗”.設(shè)對(duì)每只白鼠的實(shí)驗(yàn)相互獨(dú)立,且使用“效果明顯”的概率均為.
(Ⅰ)若,設(shè)該新藥在一次實(shí)驗(yàn)方案中“實(shí)驗(yàn)成功”的概率為,求的值;
(Ⅱ)若動(dòng)物實(shí)驗(yàn)預(yù)算經(jīng)費(fèi)700萬(wàn)元,對(duì)每只白鼠進(jìn)行實(shí)驗(yàn)需要300元,其他費(fèi)用總計(jì)為100萬(wàn)元,問(wèn)該動(dòng)物實(shí)驗(yàn)總費(fèi)用是否會(huì)超出預(yù)算,并說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ)該階段經(jīng)費(fèi)使用不會(huì)超出預(yù)算,理由見(jiàn)解析.
【解析】
(Ⅰ)根據(jù)互斥事件的概率,求一次檢驗(yàn)成功和經(jīng)過(guò)兩次檢驗(yàn)才成功的概率之和即可求解;(Ⅱ)設(shè)一次實(shí)驗(yàn)方案需要用到的經(jīng)費(fèi)為元,由題意可知的可能值為900,1500,求隨機(jī)變量的期望,利用導(dǎo)數(shù)求出期望的最大值,即可求總費(fèi)用的最大值,得出結(jié)論.
(Ⅰ)當(dāng)時(shí),一次檢驗(yàn)就取得“實(shí)驗(yàn)成功”的概率為;
經(jīng)過(guò)兩次檢驗(yàn)才取得“實(shí)驗(yàn)成功”的概率為;
在一次實(shí)驗(yàn)方案中“實(shí)驗(yàn)成功”的概率為.
(Ⅱ)設(shè)一次實(shí)驗(yàn)方案需要用到的經(jīng)費(fèi)為元,則的可能值為900,1500.
;.
所以,
設(shè),則,
當(dāng)時(shí),,所以在上單增;
當(dāng)時(shí),,所以在上單減.
所以的最大值為,
因此實(shí)施一次此方案最高費(fèi)用為元
所以動(dòng)物實(shí)驗(yàn)階段估計(jì)最高試驗(yàn)費(fèi)用為萬(wàn)元,
因?yàn)?/span>,
所以該階段經(jīng)費(fèi)使用不會(huì)超出預(yù)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)的焦點(diǎn)為,(其中)是上的一點(diǎn),且.
(1)求拋物線(xiàn)的方程;
(2)已知為拋物線(xiàn)上除頂點(diǎn)之外的任意一點(diǎn),在點(diǎn)處的切線(xiàn)與軸交于點(diǎn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),設(shè),,的斜率分別為,,,求證:,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月1日起鄭州市施行《鄭州市城市生活垃圾分類(lèi)管理辦法》,鄭州將正式進(jìn)入城市生活垃圾分類(lèi)時(shí)代.為了增強(qiáng)社區(qū)居民對(duì)垃圾分類(lèi)知識(shí)的了解,積極參與到垃圾分類(lèi)的行動(dòng)中,某社區(qū)采用線(xiàn)下和線(xiàn)上相結(jié)合的方式開(kāi)展了一次200名轄區(qū)成員參加的“垃圾分類(lèi)有關(guān)知識(shí)”專(zhuān)題培訓(xùn).為了了解參訓(xùn)成員對(duì)于線(xiàn)上培訓(xùn)、線(xiàn)下培訓(xùn)的滿(mǎn)意程度,社區(qū)居委會(huì)隨機(jī)選取了40名轄區(qū)成員,將他們分成兩組,每組20人,分別對(duì)線(xiàn)上、線(xiàn)下兩種培訓(xùn)進(jìn)行滿(mǎn)意度測(cè)評(píng),根據(jù)轄區(qū)成員的評(píng)分(滿(mǎn)分100分)繪制了如圖所示的莖葉圖.
(1)根據(jù)莖葉圖判斷轄區(qū)成員對(duì)于線(xiàn)上、線(xiàn)下哪種培訓(xùn)的滿(mǎn)意度更高,并說(shuō)明理由.
(2)求這40名轄區(qū)成員滿(mǎn)意度評(píng)分的中位數(shù),并將評(píng)分不超過(guò)、超過(guò)分別視為“基本滿(mǎn)意”“非常滿(mǎn)意”兩個(gè)等級(jí).
(ⅰ)利用樣本估計(jì)總體的思想,估算本次培訓(xùn)共有多少轄區(qū)成員對(duì)線(xiàn)上培訓(xùn)非常滿(mǎn)意;
(ⅱ)根據(jù)莖葉圖填寫(xiě)下面的列聯(lián)表.
基本滿(mǎn)意 | 非常滿(mǎn)意 | 總計(jì) | |
線(xiàn)上培訓(xùn) | |||
線(xiàn)下培訓(xùn) | |||
總計(jì) |
并根據(jù)列聯(lián)表判斷能否有99.5%的把握認(rèn)為轄區(qū)成員對(duì)兩種培訓(xùn)方式的滿(mǎn)意度有差異?
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn),,,,為橢圓的四個(gè)頂點(diǎn)(如圖),直線(xiàn)過(guò)右頂點(diǎn)且垂直于軸.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)為上一點(diǎn)(軸上方),直線(xiàn),分別交橢圓于,兩點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銀行推銷(xiāo)甲、乙兩種理財(cái)產(chǎn)品(每種產(chǎn)品限購(gòu)30萬(wàn)).每一件產(chǎn)品根據(jù)訂單金額不同劃分為:訂單金額不低于20萬(wàn)為大額訂單,低于20萬(wàn)為普通訂單.銀監(jiān)部門(mén)隨機(jī)調(diào)取購(gòu)買(mǎi)這兩種產(chǎn)品的客戶(hù)各100戶(hù),對(duì)他們的訂單進(jìn)行分析,得到如圖所示的頻率分布直方圖:
將此樣本的頻率估計(jì)視為總體的概率.購(gòu)買(mǎi)一件甲產(chǎn)品,若是大額訂單可盈利2萬(wàn)元,若是普通訂單則虧損1萬(wàn)元,購(gòu)買(mǎi)一件乙產(chǎn)品,若是大額訂單可盈利1.5萬(wàn)元,若是普通訂單則虧損0.5萬(wàn)元.
(1)記X為購(gòu)買(mǎi)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量X的數(shù)學(xué)期望;
(2)假設(shè)購(gòu)買(mǎi)4件甲產(chǎn)品和4件乙產(chǎn)品所獲得的利潤(rùn)相等.
(i)這4件甲產(chǎn)品和4件乙產(chǎn)品中各有大額訂單多少件?
(ⅱ)這4件甲產(chǎn)品和4件乙產(chǎn)品中大額訂單的概率哪個(gè)大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,a=2,_______,求△ABC的周長(zhǎng)l的范圍.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并對(duì)其進(jìn)行求解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)在處的切線(xiàn)方程;
(2)討論極值點(diǎn)的個(gè)數(shù);
(3)若是的一個(gè)極小值點(diǎn),且,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com