【題目】已知函數(shù).
(1)用定義證明:函數(shù)在區(qū)間上是減函數(shù);
(2)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值.
【答案】(1)見(jiàn)解析;(2)-2.
【解析】試題分析:(Ⅰ)設(shè),計(jì)算的結(jié)果等于,可得,從而判斷函數(shù)在區(qū)間上是減函數(shù);(Ⅱ)因?yàn)楹瘮?shù),是偶函數(shù),從而得到,由此求得的值.
試題解析:(Ⅰ)設(shè),且,
所以=
因?yàn)?/span>,所以<0, -2<0.
所以>0.即.
所以函數(shù)f(x)在區(qū)間(-∞,1]上是減函數(shù).
(Ⅱ)因?yàn)楹瘮?shù)g(x)=f(x)-mx,所以g(x)=-2x-2-mx=-(2+m)x-2.
又因?yàn)間(x)是偶函數(shù),所以g(-x)=g(x).所以-(2+m)(-x)-2=-(2+m)x-2.
所以2(2+m)x=0.因?yàn)閤是任意實(shí)數(shù),所以2+m=0.所以m=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐的底面為直角梯形, .點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)已知平面底面,且.在棱上是否存在點(diǎn),使?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了解消費(fèi)者對(duì)某款手機(jī)功能的認(rèn)同情況,通過(guò)銷(xiāo)售部隨機(jī)抽取50名購(gòu)買(mǎi)該款手機(jī)的消費(fèi)者,并發(fā)出問(wèn)卷調(diào)查(滿(mǎn)分50分),該問(wèn)卷只有30份給予回復(fù),這30份的評(píng)分如下:
(Ⅰ)完成下面的莖葉圖,并求16名男消費(fèi)者評(píng)分的中位數(shù)與14名女消費(fèi)者評(píng)分的平均值;
(Ⅱ)若大于40分為“滿(mǎn)意”,否則為“不滿(mǎn)意”,完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)者對(duì)該款手機(jī)的“滿(mǎn)意度”與性別有關(guān).
參考公式: ,其中
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,老師為了提高同學(xué)們的興趣,先讓同學(xué)們從1到3循環(huán)報(bào)數(shù),結(jié)果最后一個(gè)同學(xué)報(bào)2;再讓同學(xué)們從1到5循環(huán)報(bào)數(shù),最后一個(gè)同學(xué)報(bào)3;又讓同學(xué)們從1到7循報(bào)數(shù),最后一個(gè)同學(xué)報(bào)4.請(qǐng)你設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)班至少有多少人,并畫(huà)出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的展開(kāi)式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10∶1.
(1)求展開(kāi)式中各項(xiàng)系數(shù)的和;
(2)求展開(kāi)式中含的項(xiàng);
(3)求展開(kāi)式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒(méi)有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈線(xiàn)性相關(guān)關(guān)系,現(xiàn)分別用模型①:與模型②:作為產(chǎn)卵數(shù)和溫度的回歸方程來(lái)建立兩個(gè)變量之間的關(guān)系.
溫度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)/個(gè) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中,
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為: , .
(1)在答題卡中分別畫(huà)出關(guān)于的散點(diǎn)圖、關(guān)于的散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷哪一個(gè)模型更適宜作為回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由).
(2)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下建立關(guān)于的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為時(shí)的產(chǎn)卵數(shù).(與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù): , , )
(3)若模型①、②的相關(guān)指數(shù)計(jì)算得分分別為, ,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于二項(xiàng)式(x-1)2005有下列命題:
①該二項(xiàng)展開(kāi)式中非常數(shù)項(xiàng)的系數(shù)和是1;
②該二項(xiàng)展開(kāi)式中第六項(xiàng)為x1999;
③該二項(xiàng)展開(kāi)式中系數(shù)最大的項(xiàng)是第1002項(xiàng);
④當(dāng)x=2006時(shí),(x-1)2005除以2006的余數(shù)是2005。
其中正確命題的序號(hào)是__________。(注:把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長(zhǎng)為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com