【題目】某地要建造一個(gè)邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過邊上一點(diǎn)在區(qū)域內(nèi)作一次函數(shù)()的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)求證:;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,
①用表示、兩點(diǎn)的坐標(biāo);
②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
【答案】(1)見解析(2)①M(,0),N(,2)②S=4﹣(t),其中0<t<1,S的最大值是4.
【解析】
(1)根據(jù)函數(shù)y=ax2過點(diǎn)D,求出解析式y=2x2;
由消去y,利用△=0證明結(jié)論成立;
(2)①寫出點(diǎn)P的坐標(biāo)(t,2t2),代入直線MN的方程,用t表示出直線方程,
利用直線方程求出M、N的坐標(biāo);
②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)S(t),
利用基本不等式即可求出S的最大值.
(1)函數(shù)y=ax2過點(diǎn)D(1,2),
代入計(jì)算得a=2,
∴y=2x2;
由,消去y得2x2﹣kx﹣b=0,
由線段MN與曲線OD有且只有一個(gè)公共點(diǎn)P,
得△=(﹣k)2﹣4×2×b=0,
解得b;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為t,則0<t<1,
∴點(diǎn)P(t,2t2);
①直線MN的方程為y=kx+b,
即y=kx過點(diǎn)P,
∴kt2t2,
解得k=4t;
y=4tx﹣2t2
令y=0,解得x,∴M(,0);
令y=2,解得x,∴N(,2);
②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)為
S=S(t)=2×22×[()]=4﹣(t),其中0<t<1;
由t2,當(dāng)且僅當(dāng)t,即t時(shí)“=”成立,
所以S≤4;即S的最大值是4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以表示值域?yàn)?/span>的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個(gè)正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時(shí),,。則下列命題中正確的是:( )
A.設(shè)函數(shù)的定義域?yàn)?/span>,則“”的充要條件是“,,”
B.函數(shù)的充要條件是有最大值和最小值
C.若函數(shù),的定義域相同,且,,則
D.若函數(shù)有最大值,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種人壽保險(xiǎn)規(guī)定,投保人沒活過65歲,保險(xiǎn)公司要賠償10萬元;若投保人活過65歲,則保險(xiǎn)公司不賠償,但要給投保人一次性支付4萬元已知購買此種人壽保險(xiǎn)的每個(gè)投保人能活過65歲的概率都為,隨機(jī)抽取4個(gè)投保人,設(shè)其中活過65歲的人數(shù)為,保險(xiǎn)公司支出給這4人的總金額為萬元(參考數(shù)據(jù):)
(1)指出X服從的分布并寫出與的關(guān)系;
(2)求.(結(jié)果保留3位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個(gè)端點(diǎn),弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于且不重合的兩點(diǎn),且的平分線總是垂直于軸,是否存在實(shí)數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的左、右焦點(diǎn)分別是,,點(diǎn)為的上頂點(diǎn),點(diǎn)在上,,且.
(1)求的方程;
(2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線過且與橢圓交于,兩點(diǎn),若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水域受到污染,水務(wù)部門決定往水中投放一種藥劑來凈化水質(zhì),已知每次投放質(zhì)量為的藥劑后,經(jīng)過()天,該藥劑在水中釋放的濃度(毫克升)為,其中,當(dāng)藥劑在水中釋放濃度不低于(毫克升)時(shí)稱為有效凈化,當(dāng)藥劑在水中釋放的濃度不低于(毫克升)且不高于(毫克升)時(shí)稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為,那么該水域達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為,為了使該水域天(從投放藥劑算起,包括第天)之內(nèi)都達(dá)到最佳凈化,確定應(yīng)該投放的藥劑質(zhì)量的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,短軸長為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知不經(jīng)過點(diǎn)P(0,2)的直線l:交橢圓C于A,B兩點(diǎn),M在AB上滿足且,問直線是否過定點(diǎn),若過求定點(diǎn)坐標(biāo);若不過,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com