【題目】某工廠生產不同規(guī)格的一種產品,根據(jù)檢測標準,其合格產品的質量 與尺寸 之間滿足關系式 為大于 的常數(shù)),現(xiàn)隨機抽取6件合格產品,測得數(shù)據(jù)如下:

對數(shù)據(jù)作了處理,相關統(tǒng)計量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求 關于 的回歸方程(提示:由已知, 的線性關系);
(2)按照某項指標測定,當產品質量與尺寸的比在區(qū)間 內時為優(yōu)等品,現(xiàn)從抽取的6件合格產品再任選3件,求恰好取得兩件優(yōu)等品的概率;
(附:對于一組數(shù)據(jù) ,其回歸直線 的斜率和截距的最小二乘法估計值分別為

【答案】
(1)解:對 ,兩邊取自然對數(shù)得
,得 ,
,
,故所求回歸方程為
(2)解:由 ,解得 , ,即優(yōu)等品有3件.
記“恰好取得兩件優(yōu)等品”為事件 ,從 件合格品中選出3件的方法數(shù)為 ,
件合格品取3件恰好2件為優(yōu)等品的取法有 種,則
【解析】(1)根據(jù)題意對函數(shù)兩邊取對數(shù)得到 ln y = b ln x + ln a,令 v i = ln x i , u i = ln y i ,得 u = b v + ln a,由最小二乘法求得系數(shù)進而得出y關于x的回歸方程。(2)由題意求得優(yōu)等品的個數(shù)求得隨機變量的取值分別求得各個取值下的概率,然后結合其分布列和數(shù)學期望值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,已知A為鈍角,且2a ,若 ,則△ABC的面積的最大值為 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,點B是橢圓C的上頂點,點Q在橢圓C上(異于B點).
(Ⅰ)若橢圓V過點(﹣ , ),求橢圓C的方程;
(Ⅱ)若直線l:y=kx+b與橢圓C交于B、P兩點,若以PQ為直徑的圓過點B,證明:存在k∈R, =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中提到了一種名為“芻甍”的五面體(如圖)面 為矩形,棱 .若此幾何體中, 都是邊長為 的等邊三角形,則此幾何體的表面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 中, 分別是 的中點,將 沿 折起成 ,使面 , 分別是 的中點,平面 , 分別交于點 .

(1)求證: ;
(2)求二面角 的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|3x﹣4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|﹣4,在下列坐標系中作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是正方形的對角線,弧的圓心是,半徑為,正方形為軸旋轉,求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉所得旋轉體的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為 ,且過點 .
(1)求橢圓 的方程;
(2)設不過原點 的直線 與橢圓 交于 兩點,直線 的斜率分別為 ,滿足 ,試問:當 變化時, 是否為定值?若是,求出此定值,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.

(1)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(2)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

(3)利用分層抽樣的方法在[0,0.5) [3.5,4) [4,4.5)三組中選取5位居民,再從這5位居民中任意取三人,求這三人恰有兩人來自同一組的概率。

查看答案和解析>>

同步練習冊答案