((本題12分)如圖所示,在直四棱柱中, ,點是棱上一點

(1)求證:;

(2)求證:;

 

 

【答案】

 

如圖所示,在直四棱柱中, ,點是棱上一點.,

(1)求證:;

證明:由直四棱柱,得,

所以是平行四邊形,

所以      …………………(3分)

,,

所以 ------------------6分

 

 

(2)求證:

證明:因為,

       ----------------9分)

又因為,且,

,所以         ……………………(12分)

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆浙江省高二9月質量檢測文科數(shù)學試卷(解析版) 題型:解答題

(本題12分)如圖,在側棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,

AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E

與直線AA1的交點。

(1)證明:(i)EF∥A1D1;

(ii)BA1⊥平面B1C1EF;

(2)求BC1與平面B1C1EF所成的角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二文科數(shù)學競賽試卷(解析版) 題型:解答題

(本題12分)如圖所示,在直四棱柱中, ,點是棱上一點.

(1)求證:;

(2)求證:;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年山東省濟寧市高二上學期期中考試文科數(shù)學 題型:解答題

(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CDABAB=4,ADCD=2,M為線段AB的中點,將△ACD沿折起,使平面ACD⊥平面ABC,得到幾何體DABC,如圖2所示.

(Ⅰ)求證:BC⊥平面ACD;

(Ⅱ)求二面角ACDM的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆四川省巴中市四縣中高二上學期期末考試理科數(shù)學 題型:解答題

((本題12分)如圖2,在棱長為1的正方體ABCD—A1B1C1D1中,點E、F、G分別是DD1、BD、BB1的中點。

(Ⅰ)求直線EF與直線CG所成角的余弦值;

 (Ⅱ)求直線C1C與平面GFC所成角的正弦值;

     (Ⅲ)求二面角E—FC—B的余弦值。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案