【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為,它在點(diǎn)處的切線(xiàn)為直線(xiàn)

(Ⅰ)求直線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線(xiàn)的距離的取值范圍.

【答案】1;(2.

【解析】試題分析:(1)對(duì)曲線(xiàn)的極坐標(biāo)方程兩邊乘以化為直角坐標(biāo)方程.利用導(dǎo)數(shù)可求得曲線(xiàn)在處的切線(xiàn)方程.(2)設(shè)出橢圓的參數(shù)方程,利用點(diǎn)到直線(xiàn)距離公式和三角恒等變換的知識(shí),可求得到直線(xiàn)距離的取值范圍.

試題解析:

選修4-4:坐標(biāo)系與參數(shù)方程

解:(Ⅰ)∵曲線(xiàn)的極坐標(biāo)方程為,

,∴曲線(xiàn)的直角坐標(biāo)方程為,

的直角坐標(biāo)為(2,2),

,∴.

∴曲線(xiàn)在點(diǎn)(2,2)處的切線(xiàn)方程為,

即直線(xiàn)的直角坐標(biāo)方程為.

(Ⅱ)為橢圓上一點(diǎn),設(shè)

到直線(xiàn)的距離,

當(dāng)時(shí),有最小值0.

當(dāng)時(shí),有最大值.

到直線(xiàn)的距離的取值范圍為[0, ].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)的圖像經(jīng)過(guò)點(diǎn),且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府決定建造一批保障房供給社會(huì),緩解貧困人口的住房問(wèn)題,計(jì)劃用1 600萬(wàn)元購(gòu)得一塊土地,在該土地上建造10幢樓房的住宅小區(qū),每幢樓的樓層數(shù)相同,且每層建筑面積均為1 000平方米,每平方米的建筑費(fèi)用與樓層有關(guān),第x層樓房每平方米的建筑費(fèi)用為(kx+800)元(其中k為常數(shù)).經(jīng)測(cè)算,若每幢樓為5層,則該小區(qū)每平方米的平均綜合費(fèi)用為1 270元.

注:每平方米平均綜合費(fèi)用=.

(1) 求k的值;

(2) 問(wèn)要使該小區(qū)樓房每平方米的平均綜合費(fèi)用最低,應(yīng)將這10幢樓房建成多少層?此時(shí)每平方米的平均綜合費(fèi)用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥研究所開(kāi)發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升中的含藥量(微克)與時(shí)間(小時(shí))之間近似滿(mǎn)足如圖所示的曲線(xiàn).(當(dāng)時(shí), .

1)寫(xiě)出第一次服藥后之間的函數(shù)關(guān)系式;

2)據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于微克時(shí),治療疾病有效,求服藥一次后治療疾病有效時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí),

1求證: ,且當(dāng) 時(shí),有 ;

2判斷 R上的單調(diào)性;

3設(shè)集合A,B,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程的根的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)頂點(diǎn)分別為,焦點(diǎn)在軸上,離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)軸上一點(diǎn),過(guò)軸的垂線(xiàn)交橢圓于不同的兩點(diǎn),過(guò)的垂線(xiàn)交于點(diǎn).求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)上的動(dòng)點(diǎn)滿(mǎn)足到點(diǎn)的距離比到直線(xiàn)的距離小1.

(1)求曲線(xiàn)的方程;

(2)動(dòng)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)分別作曲線(xiàn)的切線(xiàn),切點(diǎn)為.直線(xiàn)是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A;

(2)若=-3,求tanC.

查看答案和解析>>

同步練習(xí)冊(cè)答案