【題目】已知定義在上的函數(shù)的圖像經(jīng)過點,且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )

A. B. C. D.

【答案】B

【解析】本題用排除法比較簡單,因為函數(shù)的圖象經(jīng)過點,所以錯誤, 不合題意, 可排除選項A;又因為在區(qū)間單調(diào)遞減,所以,錯誤, 不合題意;可排除選項C、D,故選B.

方法點睛】本題主要考查函數(shù)的奇偶性、單調(diào)性、排除法解選擇題,屬于難題.排除法解答選擇題是高中數(shù)學(xué)一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問題(可將選項逐個驗證);(2)求范圍問題(可在選項中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點排除);(4)解方程、求解析式、求通項、求前 項和公式問題等等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在非零實數(shù)集上的函數(shù)滿足: ,且在區(qū)間上為遞增函數(shù).

1)求的值;

2)求證: 是偶函數(shù);

3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)是奇函數(shù)

(1)求的值

(2)判斷f(x)在上的單調(diào)性。(直接寫出答案,不用證明)

(3)若對于任意,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羅源濱海新城建一座橋,兩端的橋墩已建好,這兩墩相距米,余下工程只需建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測,一個橋墩的工程費用為32萬元,距離為x米的相鄰兩墩之間的橋面工程費用為萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為萬元.

(1)試寫出關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)96,需新建多少個橋墩才能使余下工程的費用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)解析式:

(1)已知是一次函數(shù),且滿足3,求;

(2)已知,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

()若函數(shù)的圖像在處的切線不過第四象限且不過原點,求的取值范圍;

()設(shè),若上不單調(diào)且僅在處取得最大值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明: <0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的邊所在直線的方程為,滿足,點邊所在直線上且滿足.

(1)求邊所在直線的方程;

(2)求外接圓的方程;

(3)若動圓過點,且與的外接圓外切,求動圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案