【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明: <0.

【答案】(1)(2)(3),理由見解析

【解析】試題分析:(1),可知[,1]是增函數(shù),在[1,2]是減函數(shù),所以最大值為f(1).(2) 在區(qū)間上為單調(diào)遞增函數(shù),上恒成立。,利用分離參數(shù)上恒成立,即求的最大值。

(3)有兩個實(shí)根, ,兩式相減,又,

要證: ,只需證:可證。

試題解析:(1)

函數(shù)[,1]是增函數(shù),在[1,2]是減函數(shù),

所以

(2)因?yàn)?/span>,所以

因?yàn)?/span>在區(qū)間單調(diào)遞增函數(shù),所以在(0,3)恒成立

,有=,(

綜上:

(3),又有兩個實(shí)根,

,兩式相減,得,

,

于是

要證: ,只需證:

只需證:.(*)

,∴(*)化為 ,只證即可.

在(0,1)上單調(diào)遞增,

.∴

(其他解法根據(jù)情況酌情給分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆河北省正定中學(xué)高三上學(xué)期第三次月考(期中)數(shù)學(xué)(理)】在平面直角坐標(biāo)系中,當(dāng)不是原點(diǎn)時,定義的“伴隨點(diǎn)”為;當(dāng)是原點(diǎn)時,定義的“伴隨點(diǎn)”為它自身,平面曲線上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線定義為曲線的“伴隨曲線”,現(xiàn)有下列命題:

①若點(diǎn)的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn);

②若曲線關(guān)于軸對稱,則其“伴隨曲線” 關(guān)于軸對稱;

③單位圓的“伴隨曲線”是它自身;

④一條直線的“伴隨曲線”是一條直線.

其中真命題的個數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像經(jīng)過點(diǎn),且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.

(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;

(2)試寫出一個含3個元素的可倒數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與市場預(yù)測,知A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2.(注:所示圖中的橫坐標(biāo)表示投資金額,單位:萬元)

1 2

1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;

2)該企業(yè)已籌集10萬元資金,并全部投入AB兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線的普通方程和曲線的一個參數(shù)方程;

(2)曲線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府決定建造一批保障房供給社會,緩解貧困人口的住房問題,計劃用1 600萬元購得一塊土地,在該土地上建造10幢樓房的住宅小區(qū),每幢樓的樓層數(shù)相同,且每層建筑面積均為1 000平方米,每平方米的建筑費(fèi)用與樓層有關(guān),第x層樓房每平方米的建筑費(fèi)用為(kx+800)元(其中k為常數(shù)).經(jīng)測算,若每幢樓為5層,則該小區(qū)每平方米的平均綜合費(fèi)用為1 270元.

注:每平方米平均綜合費(fèi)用=.

(1) 求k的值;

(2) 問要使該小區(qū)樓房每平方米的平均綜合費(fèi)用最低,應(yīng)將這10幢樓房建成多少層?此時每平方米的平均綜合費(fèi)用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個頂點(diǎn)分別為,焦點(diǎn)在軸上,離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)點(diǎn)軸上一點(diǎn),過軸的垂線交橢圓于不同的兩點(diǎn),過的垂線交于點(diǎn).求的面積之比.

查看答案和解析>>

同步練習(xí)冊答案