【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.

(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;

(2)試寫出一個(gè)含3個(gè)元素的可倒數(shù)集.

【答案】(1)不是(2)A={1,2, }或{-1,2,}或{1,3,}

【解析】試題分析:(1)根據(jù)定義,由于2的倒數(shù)為 不在集合A中,故集合A不是可倒數(shù)集.(2)若兩個(gè)倒數(shù)互不相等,則“可倒數(shù)集”元素個(gè)數(shù)為偶數(shù),因此必有一個(gè)元素的倒數(shù)等于其本身,即必有1或-1,再取其它兩個(gè)互為倒數(shù)的數(shù)即得含3個(gè)元素的可倒數(shù)集.

試題解析: (1)由于2的倒數(shù)為 不在集合A中,故集合A不是可倒數(shù)集.

(2)若aA,則必有A,現(xiàn)已知集合A中含有3個(gè)元素,故必有一個(gè)元素有a,即a=±1,故可以取集合A={1,2, }或{-1,2, }或{1,3, }等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),記的導(dǎo)函數(shù).

(1)若曲線在點(diǎn)處的切線垂直于直線,求的值;

(2)討論的解的個(gè)數(shù);

(3)證明:對(duì)任意的,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016高考四川文科】已知數(shù)列{ }的首項(xiàng)為1, 為數(shù)列的前n項(xiàng)和, ,其中q>0, .

)若 成等差數(shù)列,求的通項(xiàng)公式;

)設(shè)雙曲線 的離心率為 ,且 ,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)解析式:

(1)已知是一次函數(shù),且滿足3,求;

(2)已知,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明: <0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),又的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明: <0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中均為實(shí)數(shù), 為自然對(duì)數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設(shè),若對(duì)任意的,

恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過度使用

過度使用

合計(jì)

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計(jì)

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案