【題目】現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:
未過度使用 | 過度使用 | 合計 | |
未患頸椎病 | 15 | 5 | 20 |
患頸椎病 | 10 | 20 | 30 |
合計 | 25 | 25 | 50 |
(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長期過度使用電子產(chǎn)品有關(guān)?
(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)有把握(2)分布列見解析,
【解析】試題分析:(1)先根據(jù)卡方公式求出,再根據(jù)參考數(shù)據(jù)確定是否有把握(2)先確定隨機(jī)變量取法,再分別利用組合數(shù)求對應(yīng)概率,列表可得分布列,最后根據(jù)熟悉期望公式求期望
試題解析:解:(1)
且P(k2≥7.879)=0.005=0.5%,
∴我們有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長期過度使用電子產(chǎn)品有關(guān)系;
(2)根據(jù)題意,的所有可能取值為0,1,2,3;
∴P(=0)==,P(=1)==,
P(=2)==,P(=3)==;
∴的分布列如下:
0 | 1 | 2 | 3 | |
P() |
∴的數(shù)學(xué)期望為E=0×+1×+2×+3×==0.9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時,求f(x)的值域;
(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個含3個元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線是過點,傾斜角為的直線,以直角坐標(biāo)系的原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線的普通方程和曲線的一個參數(shù)方程;
(2)曲線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會”等五個社團(tuán),若每名同學(xué)必須參加且只能參加1個社團(tuán)且每個社團(tuán)至多兩人參加,則這6個人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A. 3600 B. 1080 C. 1440 D. 2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府決定建造一批保障房供給社會,緩解貧困人口的住房問題,計劃用1 600萬元購得一塊土地,在該土地上建造10幢樓房的住宅小區(qū),每幢樓的樓層數(shù)相同,且每層建筑面積均為1 000平方米,每平方米的建筑費(fèi)用與樓層有關(guān),第x層樓房每平方米的建筑費(fèi)用為(kx+800)元(其中k為常數(shù)).經(jīng)測算,若每幢樓為5層,則該小區(qū)每平方米的平均綜合費(fèi)用為1 270元.
注:每平方米平均綜合費(fèi)用=.
(1) 求k的值;
(2) 問要使該小區(qū)樓房每平方米的平均綜合費(fèi)用最低,應(yīng)將這10幢樓房建成多少層?此時每平方米的平均綜合費(fèi)用為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若恒成立,求的取值范圍;
(Ⅱ)設(shè),,(為自然對數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域是R,對于任意實數(shù) ,恒有,且當(dāng) 時, 。
(1)求證: ,且當(dāng) 時,有 ;
(2)判斷 在R上的單調(diào)性;
(3)設(shè)集合A=,B=,若A∩B=,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定,公民全月工資所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額。此項稅款按下表分段累計計算:
全月應(yīng)納稅所得額 | 稅率(%) |
不超過1500元的部分 | 3 |
超過1500元至4500元的部分 | 10 |
超過4500元至9000元的部分 | 20 |
(1)某人10月份應(yīng)交此項稅款為350元,則他10月份的工資收入是多少?
(2)假設(shè)某人的月收入為元, ,記他應(yīng)納稅為元,求的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com