【題目】已知f(x)= 是(﹣∞,+∞)上的減函數(shù),那么a的取值范圍是
【答案】 ≤a<
【解析】解:∵當x≥1時,y=logax單調遞減,
∴0<a<1;
而當x<1時,f(x)=(3a﹣1)x+4a單調遞減,
∴a< ;
又函數(shù)在其定義域內單調遞減,
故當x=1時,(3a﹣1)x+4a≥logax,得a≥ ,
綜上可知, ≤a< .
所以答案是: ≤a<
【考點精析】解答此題的關鍵在于理解函數(shù)單調性的性質的相關知識,掌握函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集,以及對對數(shù)函數(shù)的單調性與特殊點的理解,了解過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范圍
(2)若a=1,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“ALS冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中恰有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關,某調查機構進行了隨機抽樣調查,調查得到如下 列聯(lián)表:
接受挑戰(zhàn) | 不接受挑戰(zhàn) | 合計 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合計 | 75 | 25 | 100 |
根據(jù)表中數(shù)據(jù),是否有99%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)在(1)的范圍內求y=g(x)﹣f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在(﹣1,+∞)內的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=loga(2﹣ax)是[0,1]上的減函數(shù),則a的取值范圍為 ( 。
A. (0,1) B. (1,2) C. (0,2) D. (2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com