【題目】如圖,在四棱錐中,側(cè)面底面,且, , , 是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ) 。
【解析】試題分析:(1)根據(jù)條件可得, 兩兩垂直,因此可建立空間直角坐標(biāo)系,然后將平面的問題轉(zhuǎn)化成用向量證明, 的問題;(2)求出平面,平面的法向量,利用兩向量的夾角求出二面角的平面角。
試題解析:
(Ⅰ)證明:因?yàn)閭?cè)面底面,且, ,
所以, , ,
如圖,以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線, , 為軸, 軸, 軸建立空間直角坐標(biāo)系.
設(shè), 是的中點(diǎn),則有, , , , ,
于是, , ,
因?yàn)?/span>, ,
所以, ,且,
因此平面
(Ⅱ)由(Ⅰ)可知平面的一個法向量為,
設(shè)平面的法向量為 ,
, ,
則 所以
不妨設(shè),則 ,
,
由圖形知,二面角為鈍角,
所以二面角的余弦值為。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 | 不喜歡數(shù)學(xué)課 | 合計(jì) | |
男 | 30 | 60 | 90 |
女 | 20 | 90 | 110 |
合計(jì) | 50 | 150 | 200 |
經(jīng)計(jì)算K2≈6.06,根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及下面一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最下二乘估計(jì)分別為 , .
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與 哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費(fèi)x=49時,年銷售量及年利潤的預(yù)報值時多少?
②年宣傳費(fèi)x為何值時,年利潤的預(yù)報值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場研究人員為了了解共享單車運(yùn)營公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的拆線圖.
(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測公司2017年4月份(即時)的市場占有率;
(2)為進(jìn)一步擴(kuò)大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報廢年限各不相同.考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對兩款車型的單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
| 20 | 35 | 35 | 10 | 100 |
| 10 | 30 | 40 | 20 | 100 |
經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若直線是曲線與曲線的公切線,求;
(2)設(shè),若有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com