已知雙曲線)的焦距為,右頂點為,拋物線的焦點為,若雙曲線截拋物線的準線所得線段長為,且,則雙曲線的漸近線方程為___________.
由已知,所以,代入雙曲線方程得,所以,直線被雙曲線截得的線段長為,從而,所以,,所求漸近線方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=-8x的焦點坐標是( 。
A.(0,-2)B.(-2,0)C.(0,2)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,一隧道內設雙行線公路,其截面由一個長方形和拋物線構成,為保安全,要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上高度之差至少要有0.5m.若行駛車道總寬度AB為6m,計算車輛通過隧道的限制高度是多少米?(精確到0.1m)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知橢圓,雙曲線(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為(     )
A.5B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點M,N滿足,若存在,求直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

分別為和橢圓上的點,則兩點間的最大距離是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線+=1的離心率,則的值為      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,是雙曲線的左,右焦點,若雙曲線左支上存在一點與點關于直線對稱,則該雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

同步練習冊答案