【題目】設函數(shù)

(1)當時,求的定義域;

(2)若函數(shù)的定義域為非空集合,求實數(shù)的取值范圍.

【答案】(1) ; (2) .

【解析】

(1)根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可;

(2)問題轉化為x∈R,使得不等式a≥x+|x﹣1|成立,求出函數(shù)的最小值,求出a的范圍即可.

(1)當a=3時,,

則3﹣x﹣|x﹣1|≥0x+|x﹣1|≤3.

令g(x)=x+|x﹣1|,

由g(x)≤3x≤2.

即函數(shù)f(x)的定義域為(﹣∞,2];

(2)由題意知,a﹣x﹣|x﹣1|≥0a≥x+|x﹣1|,

x∈R,使得不等式a≥x+|x﹣1|成立.

由(1)知當x1時,g(x)為常數(shù)1;

當x1時,g(x)為增函數(shù).

則當x1時,g(x)min=1,

由a≥x+|x﹣1|得a≥1.

即a的取值范圍是[1,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=2sin(2x﹣ )的圖象向左平移m個單位(m>0),若所得的圖象關于直線x= 對稱,則m的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示平行于棱AD,BC的平面分別交四面體的棱ABBD,DCCA于點E,F,G,H

1求四面體ABCD的體積;

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ( e為自然對數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實數(shù)a的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為ρsin(θ+ )= ,圓C的方程為 (θ為參數(shù)).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于的不等式恰好有4個整數(shù)解,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】活水圍網(wǎng)養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:活水圍網(wǎng)養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過/立方米時, 的值為千克/年;當時, 的一次函數(shù),且當時,

)當時,求關于的函數(shù)的表達式.

)當養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,直線的參數(shù)方程為為參數(shù)),若交于兩點.

(Ⅰ)求圓的直角坐標方程

(Ⅱ)設,的值.

【答案】(1);(2)1.

【解析】試題分析:(1)先根據(jù) 將圓的極坐標方程化為直角坐標方程;(2)先將直線參數(shù)方程調(diào)整化簡,再將直線參數(shù)方程代入圓直角坐標方程,根據(jù)參數(shù)幾何意義得,最后利用韋達定理求解

試題解析:(Ⅰ)由,得,

(Ⅱ)把,

代入上式得,

,則, ,

.

型】解答
束】
23

【題目】證明:(Ⅰ)已知是正實數(shù),.求證 ;

(Ⅱ)已知,, , .求證 中至少有一個是負數(shù).

查看答案和解析>>

同步練習冊答案