【題目】將函數(shù)f(x)=2sin(2x﹣ )的圖象向左平移m個(gè)單位(m>0),若所得的圖象關(guān)于直線x= 對(duì)稱,則m的最小值為
【答案】
【解析】解:將函數(shù)f(x)=2sin(2x﹣ )的圖象向左平移m個(gè)單位(m>0),
可得y=2sin[2(x+m)﹣ ]=2sin(2x+2m﹣ )的圖象.
∵所得的圖象關(guān)于直線x= 對(duì)稱,∴2 +2m﹣ =kπ+ ,k∈Z,
即 m= + ,k∈Z,則m的最小值為 ,
所以答案是: .
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的中心為點(diǎn), 邊所在的直線方程為.
(1)求邊所在的直線方程和正方形外接圓的方程;
(2)若動(dòng)圓過(guò)點(diǎn),且與正方形外接圓外切,求動(dòng)圓圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)點(diǎn)(1,0)且被兩條平行直線l1:3x+y-6=0和l2:3x+y+3=0所截得的線段長(zhǎng)為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}滿足 =pn+r(p,r為常數(shù)),其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若p=1,r=0,求證:{an}是等差數(shù)列;
(2)若p= ,a1=2,求數(shù)列{an}的通項(xiàng)公式;
(3)若a2015=2015a1 , 求pr的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an},{bn},{cn}滿足a1=a,b1=1,c1=3,對(duì)于任意n∈N* , 有bn+1= ,cn+1= .
(1)求數(shù)列{cn﹣bn}的通項(xiàng)公式;
(2)若數(shù)列{an}和{bn+cn}都是常數(shù)項(xiàng),求實(shí)數(shù)a的值;
(3)若數(shù)列{an}是公比為a的等比數(shù)列,記數(shù)列{bn}和{cn}的前n項(xiàng)和分別為Sn和Tn , 記Mn=2Sn+1﹣Tn , 求Mn< 對(duì)任意n∈N*恒成立的a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x∈R,f(x)= ,若不等式f(x)+f(2x)≤k對(duì)于任意的x∈R恒成立,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時(shí),函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( )
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)已知函數(shù)f(x)在點(diǎn)(l,f(1))處與x軸相切,求實(shí)數(shù)m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的結(jié)論下,對(duì)于任意的0<a<b,證明: < ﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) .
(1)當(dāng)時(shí),求的定義域;
(2)若函數(shù)的定義域?yàn)榉强占,求?shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com