【題目】已知函數(shù),其中.

I)討論函數(shù)的單調(diào)性;

II)若,證明:對(duì)任意 ,總有.

【答案】I,上單調(diào)遞增,在上單調(diào)遞減,時(shí),上單調(diào)遞增,時(shí),上單調(diào)遞增,在上單調(diào)遞減;(II)證明見(jiàn)解析.

【解析】試題分析:(I)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),根據(jù)兩個(gè)零點(diǎn)大小分三種情況討論:若,,上單調(diào)遞增,在上單調(diào)遞減.時(shí),則上單調(diào)遞增.時(shí),則,上單調(diào)遞增,在上單調(diào)遞減.II)同(1)可得:當(dāng)時(shí),上單調(diào)遞增,因此將所證不等式變量分離得 ,構(gòu)造函數(shù),只需利用導(dǎo)數(shù)證明函數(shù)單調(diào)遞減

試題解析:解:(I,,

,得

,則時(shí),;

時(shí),;

時(shí),,

故函數(shù),上單調(diào)遞增,在上單調(diào)遞減

時(shí),則上單調(diào)遞增

時(shí),則上單調(diào)遞增,在上單調(diào)遞減

II)由(I)可知,當(dāng)時(shí),上單調(diào)遞增,不妨設(shè),則有,,于是要證,即證

即證,

,

,

,,

上單調(diào)遞減,即有.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁場(chǎng)魚(yú)群的最大養(yǎng)殖量為噸,為保證魚(yú)群的生長(zhǎng)空間,實(shí)際的養(yǎng)殖量要小于,留出適當(dāng)?shù)目臻e量,空閑量與最大養(yǎng)殖量的比值叫空閑率,已知魚(yú)群的年增加量(噸)和實(shí)際養(yǎng)殖量(噸)與空閑率的乘積成正比(設(shè)比例系數(shù)).

(1)寫(xiě)出的函數(shù)關(guān)系式,并指出定義域;

(2)求魚(yú)群年增長(zhǎng)量的最大值;

(3)當(dāng)魚(yú)群年增長(zhǎng)量達(dá)到最大值時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)判斷并證明函數(shù)上單調(diào)性;

(3)求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是

A. 若直線(xiàn)與平面平行,則與平面內(nèi)的任意一條直線(xiàn)都沒(méi)有公共點(diǎn);

B. 若直線(xiàn)與平面平行,則與平面內(nèi)的任意一條直線(xiàn)都平行;

C. 若直線(xiàn)上有無(wú)數(shù)個(gè)點(diǎn)不在平面 內(nèi),則;

D. 如果兩條平行線(xiàn)中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)AB兩種產(chǎn)品,生產(chǎn)1A種產(chǎn)品需要煤4噸、電18千瓦;生產(chǎn)1B種產(chǎn)品需要煤1噸、電15千瓦。現(xiàn)因條件限制,該企業(yè)僅有煤10,并且供電局只能供電66千瓦,若生產(chǎn)1A種產(chǎn)品的利潤(rùn)為10000元;生產(chǎn)1B種產(chǎn)品的利潤(rùn)是5000元,試問(wèn)該企業(yè)如何安排生產(chǎn),才能獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.

(Ⅰ)求角A的大小;

(Ⅱ)若,,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?

(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來(lái)描述該公司每天的用水量?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量

(1)分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿(mǎn)足的概率;

(2)在連續(xù)區(qū)間上取值,求滿(mǎn)足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn),半徑為2的圓相切,圓心軸上且在直線(xiàn)的右上方

(1)求圓的方程;

(2)若直線(xiàn)過(guò)點(diǎn)且與圓交于,兩點(diǎn)軸上方,軸下方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案