【題目】已知函數(shù),其中.
(I)討論函數(shù)的單調(diào)性;
(II)若,證明:對(duì)任意 ,總有.
【答案】(I)①若,在,上單調(diào)遞增,在上單調(diào)遞減,②若時(shí),在上單調(diào)遞增,③若時(shí),在,上單調(diào)遞增,在上單調(diào)遞減;(II)證明見(jiàn)解析.
【解析】試題分析:(I)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn)或,根據(jù)兩個(gè)零點(diǎn)大小分三種情況討論:若,在,上單調(diào)遞增,在上單調(diào)遞減.若時(shí),則在上單調(diào)遞增.若時(shí),則在,上單調(diào)遞增,在上單調(diào)遞減.(II)同(1)可得:當(dāng)時(shí),在上單調(diào)遞增,因此將所證不等式變量分離得 ,構(gòu)造函數(shù),只需利用導(dǎo)數(shù)證明函數(shù)單調(diào)遞減
試題解析:解:(I)∵,,
令,得或
①若,則時(shí),;
時(shí),;
時(shí),,
故函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減
②若時(shí),則在上單調(diào)遞增
③若時(shí),則在,上單調(diào)遞增,在上單調(diào)遞減
(II)由(I)可知,當(dāng)時(shí),在上單調(diào)遞增,不妨設(shè),則有,,于是要證,即證,
即證,
令,
∵,
∵,,
∴在上單調(diào)遞減,即有.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某漁場(chǎng)魚(yú)群的最大養(yǎng)殖量為噸,為保證魚(yú)群的生長(zhǎng)空間,實(shí)際的養(yǎng)殖量要小于,留出適當(dāng)?shù)目臻e量,空閑量與最大養(yǎng)殖量的比值叫空閑率,已知魚(yú)群的年增加量(噸)和實(shí)際養(yǎng)殖量(噸)與空閑率的乘積成正比(設(shè)比例系數(shù)).
(1)寫(xiě)出與的函數(shù)關(guān)系式,并指出定義域;
(2)求魚(yú)群年增長(zhǎng)量的最大值;
(3)當(dāng)魚(yú)群年增長(zhǎng)量達(dá)到最大值時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是
A. 若直線(xiàn)與平面平行,則與平面內(nèi)的任意一條直線(xiàn)都沒(méi)有公共點(diǎn);
B. 若直線(xiàn)與平面平行,則與平面內(nèi)的任意一條直線(xiàn)都平行;
C. 若直線(xiàn)上有無(wú)數(shù)個(gè)點(diǎn)不在平面 內(nèi),則;
D. 如果兩條平行線(xiàn)中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)1噸A種產(chǎn)品需要煤4噸、電18千瓦;生產(chǎn)1噸B種產(chǎn)品需要煤1噸、電15千瓦。現(xiàn)因條件限制,該企業(yè)僅有煤10噸,并且供電局只能供電66千瓦,若生產(chǎn)1噸A種產(chǎn)品的利潤(rùn)為10000元;生產(chǎn)1噸B種產(chǎn)品的利潤(rùn)是5000元,試問(wèn)該企業(yè)如何安排生產(chǎn),才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若,,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認(rèn)為應(yīng)該用平均數(shù)和中位數(shù)中的哪一個(gè)數(shù)來(lái)描述該公司每天的用水量?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量.
(1)若分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿(mǎn)足的概率;
(2)若在連續(xù)區(qū)間上取值,求滿(mǎn)足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn):,半徑為2的圓與相切,圓心在軸上且在直線(xiàn)的右上方.
(1)求圓的方程;
(2)若直線(xiàn)過(guò)點(diǎn)且與圓交于,兩點(diǎn)(在軸上方,在軸下方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com