【題目】某漁場(chǎng)魚(yú)群的最大養(yǎng)殖量為噸,為保證魚(yú)群的生長(zhǎng)空間,實(shí)際的養(yǎng)殖量要小于,留出適當(dāng)?shù)目臻e量,空閑量與最大養(yǎng)殖量的比值叫空閑率,已知魚(yú)群的年增加量(噸)和實(shí)際養(yǎng)殖量(噸)與空閑率的乘積成正比(設(shè)比例系數(shù)).
(1)寫(xiě)出與的函數(shù)關(guān)系式,并指出定義域;
(2)求魚(yú)群年增長(zhǎng)量的最大值;
(3)當(dāng)魚(yú)群年增長(zhǎng)量達(dá)到最大值時(shí),求的取值范圍.
【答案】(1).定義域?yàn)?/span>;
(2)當(dāng)時(shí),;
(3)的取值范圍是.
【解析】
試題分析:(1)由題意求出空閑率,然后利用正比例關(guān)系得與的函數(shù)關(guān)系式,并確定函數(shù)的定義域;
(2)利用配方法求二次函數(shù)的最值;
(3)魚(yú)群年增長(zhǎng)量達(dá)到最大值時(shí),應(yīng)保證實(shí)際養(yǎng)殖量和增加量的和在0到之間,由此列不等式求解的取值范圍即可.
試題解析:(1)空閑率為,由已知得:.
(2)因?yàn)?/span>,所以當(dāng)時(shí),.
(3)由題意得:,即,解得.
又因?yàn)?/span>,所以,所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)對(duì)于任意的x都滿(mǎn)足f(x+1)=-f(x),當(dāng)-1≤x<1時(shí),f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是( )
A. ∪(5,+∞) B. ∪
C. ∪(5,7) D. ∪[5,7)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計(jì)顯示,參與網(wǎng)上購(gòu)票的1000位購(gòu)票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個(gè)年齡段的網(wǎng)上購(gòu)票人數(shù)成等差數(shù)列,求的值;
(2)為鼓勵(lì)大家網(wǎng)上購(gòu)票,該平臺(tái)常采用購(gòu)票就發(fā)放酒店入住代金券的方法進(jìn)行促銷(xiāo),具體做法如下:
年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)滿(mǎn)足f(x+y)=f(x)+f(y),當(dāng)x>0時(shí),有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)分別為線段上的點(diǎn),.
(1)求證:平面平面;
(2)求證:當(dāng)點(diǎn)不與點(diǎn)重合時(shí),平面;
(3)當(dāng),時(shí),求點(diǎn)到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)已知,函數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一青蛙從點(diǎn)開(kāi)始依次水平向右和豎直向上跳動(dòng),其落點(diǎn)坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點(diǎn)到點(diǎn)所經(jīng)過(guò)的路程.
(1)若點(diǎn)為拋物線()準(zhǔn)線上一點(diǎn),點(diǎn)均在該拋物線上,并且直線經(jīng)過(guò)該拋物線的焦點(diǎn),證明.
(2)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫(xiě)出(不需證明);
(3)若點(diǎn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(I)討論函數(shù)的單調(diào)性;
(II)若,證明:對(duì)任意 ,總有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com