【題目】如圖,正方體ABCD-A1B1C1D1中,P,M,N分別為棱DD1,AB,BC的中點(diǎn).

(1)求二面角B1-MN-B的正切值.

(2)求證:PB⊥平面MNB1.

【答案】(1);(2)見(jiàn)解析

【解析】試題分析:1由平面DD1B1B⊥平面ABCD,得AC⊥平面DD1B1B,故可得MN⊥平面DD1B1B,所以B1F⊥MN,BF⊥MN,可得∠B1FB即為二面角B1-MN-B的平面角,在Rt△B1FB中, 可得tan∠B1FB=2.(2)過(guò)點(diǎn)P作PE⊥AA1,則PE∥DA, 由DA⊥平面ABB1A1,得PE⊥平面ABB1A1,所以PE⊥B1M,又BE⊥B1M, 所以B1M⊥平面PEB,從而PB⊥MB1,又PB⊥MN,所以PB⊥平面MNB1.

試題解析:

(1)連接BD交MN于F,連接B1F,連接AC.

因?yàn)槠矫鍰D1B1B⊥平面ABCD,交線為BD,AC⊥BD,

所以AC⊥平面DD1B1B,

又因?yàn)锳C∥MN,

所以MN⊥平面DD1B1B.

因?yàn)锽1F,BF平面DD1B1B,

所以B1F⊥MN,BF⊥MN,

因?yàn)锽1F平面B1MN,BF平面BMN,

所以∠B1FB即為二面角B1-MN-B的平面角,

在Rt△B1FB中,設(shè)B1B=1,則FB=,

所以tan∠B1FB=2.

故二面角B1-MN-B的正切值為2.

(2)過(guò)點(diǎn)P作PE⊥AA1,則PE∥DA,連接BE.

又DA⊥平面ABB1A1,

所以PE⊥平面ABB1A1,

因?yàn)锽1M平面ABB1A1,

所以PE⊥B1M,

又BE⊥B1M, PE∩BE=E,

所以B1M⊥平面PEB.

所以PB⊥MB1.

由(1)中MN⊥平面DD1B1B,得PB⊥MN,

又MB1∩MN=M,

所以PB⊥平面MNB1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)四川省民政廳報(bào)告,2013年6月29日以來(lái),四川省中東部出現(xiàn)強(qiáng)降雨天氣過(guò)程,局地出現(xiàn)大暴雨.暴雨洪澇災(zāi)害已造成遂寧、德陽(yáng)、綿陽(yáng)等12市34縣(市、區(qū))244萬(wàn)人受災(zāi),共造成直接經(jīng)濟(jì)損失85502.41萬(wàn)元.適逢暑假,小王在某小區(qū)調(diào)查了50戶居民由于洪災(zāi)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖(如圖).


(1)若先從損失超過(guò)6000元的居民中隨機(jī)抽出2戶進(jìn)行調(diào)查,求這2戶不在同一小組的概率;(2)洪災(zāi)過(guò)后小區(qū)居委會(huì)號(hào)召小區(qū)居民為洪災(zāi)重災(zāi)區(qū)捐款,小王調(diào)查的50戶居民的捐款情況如表,在表格空白處填寫(xiě)正確的數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

P(K2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:臨界值表參考公式:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)求函數(shù)在區(qū)間上的最小值;

2)對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)證明:對(duì)一切, 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆廣東省深圳市高三下學(xué)期第一次調(diào)研考試(一模)數(shù)學(xué)理】已知函數(shù)為自然對(duì)數(shù)的底數(shù).

(1)求曲線處的切線方程;

(2)關(guān)于的不等式上恒成立,求實(shí)數(shù)的值;

(3)關(guān)于的方程有兩個(gè)實(shí)根,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿足:|a2-a3|=10,a1a2a3=125.

(1) 求{an}的通項(xiàng)公式;

(2) 求證:+…+<1對(duì)任意正整數(shù)m都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017屆陜西省西安市鐵一中學(xué)高三上學(xué)期第五次模擬考試數(shù)學(xué)(理)】已知函數(shù),其中常數(shù).

(Ⅰ)討論上的單調(diào)性;

(Ⅱ)當(dāng)時(shí),若曲線上總存在相異兩點(diǎn),使曲線兩點(diǎn)處的切線互相平行,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車一族非常關(guān)心的問(wèn)題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限 (單位:年)與所支出的總費(fèi)用 (單位:萬(wàn)元)有如下的數(shù)據(jù)資料:

使用年限

2

3

4

5

6

總費(fèi)用

2.2

3.8

5.5

6.5

7.0

若由資料知對(duì)呈線性相關(guān)關(guān)系.

(1)試求線性回歸方程= +的回歸系數(shù),;

(2)當(dāng)使用年限為年時(shí),估計(jì)車的使用總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)的名同學(xué)準(zhǔn)備拼車去旅游,其中大一、大二、大三、大四每個(gè)年級(jí)各兩名,分乘甲、乙兩輛汽車.每車限坐名同學(xué)(乘同一輛車的名同學(xué)不考慮位置),其中大一的孿生姐妹需乘同一輛車,則乘坐甲車的名同學(xué)中恰有名同學(xué)是來(lái)自于同一年級(jí)的乘坐方式共有_______種(有數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案