【題目】已知分別是橢圓的左、右焦點,離心率為, 分別是橢圓的上、下頂點, .
(1)求橢圓的方程;
(2)若直線與橢圓交于相異兩點,且滿足直線的斜率之積為,證明:直線恒過定點,并采定點的坐標.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-2x.
(1)求f(x)的解析式,并畫出f(x)的圖象;
(2)設g(x)=f(x)-k,利用圖象討論:當實數k為何值時,函數g(x)有一個零點?二個零點?三個零點?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數不超過5人”,根據連續(xù)7天的新增病例數計算,下列① ~ ⑤各個選項中,一定符合上述指標的是 ( )
①平均數; ②標準差; ③平均數且標準差;
④平均數且極差小于或等于2;⑤眾數等于1且極差小于或等于4。
A. ①② B. ③④ C. ③④⑤ D. ④⑤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直線l:3x-y-1=0上求點P和Q,使得
(1)點P到點A(4,1)和B(0,4)的距離之差最大;
(2)點Q到點A(4,1)和C(3,4)的距離之和最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣ x3+ x2﹣2x(a∈R)
(1)當a=3時,求函數f(x)的單調區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com