【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍.
【答案】
(1)解: = .
∵x=2為f(x)的極值點,∴f′(2)=0,即 ,解得a=0.
又當(dāng)a=0時,f′(x)=x(x﹣2),可知:x=2為f(x)的極值點成立
(2)解:∵y=f(x)在[3,+∞)上為增函數(shù),
∴f′(x)= ≥0,在[3,+∞)上恒成立.
①當(dāng)a=0時,f′(x)=x(x﹣2)≥0在[3,+∞)上恒成立,∴f(x)在[3,+∞)上為增函數(shù),故a=0符合題意.
②當(dāng)a≠0時,由函數(shù)f(x)的定義域可知:必須2ax+1>0對x≥3恒成立,故只能a>0,
∴2ax2+(1﹣4a)x﹣(4a2+2)≥0在區(qū)間[3,+∞)上恒成立.
令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其對稱軸為 .
∵a>0, ,從而g(x)≥0在區(qū)間[3,+∞)上恒成立,只要g(3)≥0即可.
由g(3)=﹣4a2+6a+1≥0,解得 .
∵a>0,∴ .
綜上所述,a的取值范圍為
【解析】(1)令f′(x)=0解得a,再驗證是否滿足取得極值的條件即可.(2)由y=f(x)在[3,+∞)上為增函數(shù),可得f′(x)= ≥0,在[3,+∞)上恒成立.對a分類討論即可得出.
【考點精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù) | 10環(huán) | 9環(huán) | 8環(huán) | 7環(huán) |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該射擊隊員射擊一次 求:
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點B的坐標(biāo)為(1,2),求點A和點C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點的橫坐標(biāo)為,過的直線交于一點,交軸于點,過點作的垂線交于另一點,若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點到焦點的距離為.
(1)若,過點, 的直線與拋物線相交于另一點,求的值;
(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標(biāo)原點, ,試問:是否存在實數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過尾/立方米時, 的值為千克/年;當(dāng)時, 是的一次函數(shù),且當(dāng)時, .
()當(dāng)時,求關(guān)于的函數(shù)的表達(dá)式.
()當(dāng)養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com