【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)?/span>{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f﹣1(x),且f﹣1(x)與f(x)不完全相同,則f(x)與f﹣1(x)圖象的公共點(diǎn)必在直線y=x上;
其中真命題的序號是 .(寫出所有真命題的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),則實(shí)數(shù)b的取值范圍為( )
A.[1,3]
B.(1,3)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月19日凌晨某公司公布的年中促銷全天交易數(shù)據(jù)顯示,天貓年中促銷當(dāng)天全天下單金額為1592億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計(jì)部門隨機(jī)抽查了6月18日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購金額(元) | 頻數(shù) | 頻率 |
5 | 0.05 | |
15 | 0.15 | |
25 | 0.25 | |
30 | 0.3 | |
合計(jì) | 100 | 1 |
(Ⅰ)先求出的值,再將圖中所示的頻率分布直方圖繪制完整;
(Ⅱ)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
網(wǎng)齡3年以上 | 網(wǎng)齡不足3年 | 總計(jì) | |
購物金額在2000元以上 | 35 | ||
購物金額在2000元以下 | 20 | ||
總計(jì) | 100 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中.
(Ⅲ)從這100名網(wǎng)購者中根據(jù)購物金額分層抽出20人給予返券獎(jiǎng)勵(lì),為進(jìn)一步激發(fā)購物熱情,在和兩組所抽中的8人中再隨機(jī)抽取2人各獎(jiǎng)勵(lì)1000元現(xiàn)金,求組獲得現(xiàn)金獎(jiǎng)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.
(1)求的值;
(2)求展開式中所有二項(xiàng)式系數(shù)的和;
(3)求展開式中所有的有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為,
(1)若在一個(gè)盒子中,放有標(biāo)號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在[0,3]上先后取兩個(gè)數(shù)分別記為x,y,求P點(diǎn)在第一象限的概率;
(3)從原點(diǎn)O出發(fā)的某質(zhì)點(diǎn),按向量移動(dòng)的概率為,按向量移動(dòng)的概率為,求可到達(dá)點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是以d(d≠0)為公差的等差數(shù)列,a1=2,且a2 , a4 , a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an2n(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足 ,當(dāng) 時(shí),f(x)=lnx,若在 上,方程f(x)=kx有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( )
A.
B.[﹣4ln4,﹣ln4]
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.
(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人在路邊設(shè)局,宣傳牌上寫有“擲骰子,贏大獎(jiǎng)”.其游戲規(guī)則是這樣的:你可以在1,2,3,4,5,6點(diǎn)中任選一個(gè),并押上賭注元,然后擲1顆骰子,連續(xù)擲3次,若你所押的點(diǎn)數(shù)在3次擲骰子過程中出現(xiàn)1次,2次,3次,那么原來的賭注仍還給你,并且莊家分別給予你所押賭注的1倍,2倍,3倍的獎(jiǎng)勵(lì).如果3次擲骰子過程中,你所押的點(diǎn)數(shù)沒出現(xiàn),那么你的賭注就被莊家沒收.
(1)求擲3次骰子,至少出現(xiàn)1次為5點(diǎn)的概率;
(2)如果你打算嘗試一次,請計(jì)算一下你獲利的期望值,并給大家一個(gè)正確的建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com