已知函數(shù)g(x)=lnx,x∈R,求g(x)的反函數(shù)在x=0處的切線方程.
考點:反函數(shù),利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:可得反函數(shù)為y=ex,求導(dǎo)數(shù)代x=0可得切線斜率,可得切線方程.
解答: 解:令y=lnx,解得x=ey
∴g(x)的反函數(shù)為y=ex,
求導(dǎo)數(shù)可得y′=ex,
∴在x=0處的切線斜率為e0=1,且過點為(0,1)
∴所求直線的方程為y-1=x-0,
化為一般式可得x-y+1=0.
點評:本題考查反函數(shù),涉及切線方程的求解,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(2x+3)n的展開式中,若常數(shù)項為81,則含x3的項的系數(shù)為(  )
A、216B、96C、81D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,曲線Cl的參數(shù)方程為
x=
2
cosα
y=
2
sinα
(α為參數(shù)),以原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+
π
4
)=4
2

(Ⅰ)求曲線Cl的普通方程與曲線C2的直角坐標方程;
(Ⅱ)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(
4
,π),sin(α+β)=-
3
5
,sin(β-
π
4
)=
12
13
,求cos(α+
π
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校舉行投籃比賽,比賽規(guī)則如下:每一次投籃中一次得2分,未中得-1分,每位同學(xué)原始積分均為0分,當累積得分少于或等于-2分則停止投籃,否則繼續(xù),每位同學(xué)最多投籃5次,且規(guī)定總共投中5、4、3次的同學(xué)分別為一、二、三等獎,獎金分別為30元、20元、10元.學(xué)生甲參加了此活動,若他每次投籃命中的概率均為
1
2
,且互不影響.
(1)分別求學(xué)生甲能獲一等獎、二等獎的概率;
(2)記學(xué)生甲獲得的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E的兩個焦點分別為(-1,0)和(1,0),離心率e=
2
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓E交于不同的兩點A、B,且線段AB的垂直平分線過定點P(
1
2
,0),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項數(shù)列,{bn}是等差數(shù)列,bn,
an
,bn+2成等比數(shù)列,且a1=3,a3=15.
(1)求數(shù)列{bn}的通項公式;
(2)設(shè)數(shù)列{
1
an
}的前n項和為Sn,證明Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0)的最小正周期為
π
2

(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移
π
8
個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0在區(qū)間[0,
π
2
]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個小組各10名學(xué)生的英語口語測試成績的莖葉圖如圖所示.現(xiàn)從這20名學(xué)生中隨機抽取一人,將“抽出的學(xué)生為甲小組學(xué)生”記為事件A;“抽出的學(xué)生英語口語測試成績不低于85分”記為事件B.則P(A|B)的值是
 

查看答案和解析>>

同步練習(xí)冊答案