【題目】設(shè)函數(shù) k為常數(shù))

1)當(dāng)時(shí),求函數(shù)的最值;

2)若,討論函數(shù)的單調(diào)性

【答案】1)最小值為,無大值;(2)見解析

【解析】

1)求出導(dǎo)函數(shù)得函數(shù)的單調(diào)性即可求得函數(shù)的最值;

2)根據(jù)導(dǎo)函數(shù),對(duì)進(jìn)行分類討論即可得到原函數(shù)的單調(diào)性.

1)當(dāng)時(shí),,

函數(shù)的定義域是

,得;令,得

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增

所以函數(shù)的最小值為,無最大值.

2)函數(shù)的定義域是.

,則

①當(dāng)時(shí),,方程有兩不等根,,且,則的兩根為,

,得;令,得

所以函數(shù)在區(qū)間上單調(diào)遞增,

在區(qū)間,上單調(diào)遞減

②當(dāng)時(shí),,,,且不恒為0,所以函數(shù)在區(qū)間上單調(diào)遞減

③當(dāng)時(shí),,方程有兩不等根,,且,則=0上的根為.

,得;令,得,

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間單調(diào)遞增.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=ax3axxlnx.其中aR

(Ⅰ)若,證明:fx)≥0;

(Ⅱ)若xe1x1fx)在x∈(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究印刷單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表.

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,方程甲:,方程乙:.

1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

i)完成下表(計(jì)算結(jié)果精確到0.1);

印刷冊(cè)數(shù)(千冊(cè))

2

3

4

5

8

單冊(cè)成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

ii)分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.

2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠以每冊(cè)5元的價(jià)格將書籍出售給訂貨商,試估計(jì)印刷廠二次印刷獲得的利潤.(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細(xì)草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測(cè)圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學(xué)啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達(dá)到古代數(shù)學(xué)的高峰,其中一些算法如開立方和開四次方也是當(dāng)時(shí)世界數(shù)學(xué)的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學(xué)從這十本書中任借兩本閱讀,那么他取到的書的書名中有字的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)成立; 成立. 如果“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,底面為等腰梯形,,,,點(diǎn)在底面的投影恰好為的交點(diǎn),.

1)證明:

2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,,的中點(diǎn),四邊形是等腰梯形,,

(Ⅰ)求異面直線所成角的正弦值;

(Ⅱ)求證:平面平面

(Ⅲ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式,并證明:.

(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點(diǎn),且線段的中點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某游樂園的一個(gè)摩天輪半徑為10米,輪子的底部在地面上2米處,如果此摩天輪每20分鐘轉(zhuǎn)一圈,當(dāng)摩天輪上某人經(jīng)過處時(shí)開始計(jì)時(shí)(按逆時(shí)針方向轉(zhuǎn)),(其中平行于地面).

1)求開始轉(zhuǎn)動(dòng)5分鐘時(shí)此人相對(duì)于地面的高度.

2)開始轉(zhuǎn)動(dòng)分鐘時(shí),摩天輪上此人經(jīng)過點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案