【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數(shù)學的高峰,其中一些算法如開立方和開四次方也是當時世界數(shù)學的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學從這十本書中任借兩本閱讀,那么他取到的書的書名中有字的概率為(

A.B.C.D.

【答案】D

【解析】

現(xiàn)在小明同學從這十本書中任借兩本閱讀,基本事件總數(shù),他取到的書的書名中有字包含的基本事件總數(shù),由此能求出他取到的書的書名中有字的概率.

解: 小明同學從這十本書中任借兩本閱讀,基本事件總數(shù)

他取到的書的書名中有字包含的基本事件總數(shù),

那么他取到的書的書名中有字的概率為

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的圖象上存在兩點,使得是以為直角頂點的直角三角形(其中為坐標原點),且斜邊的中點恰好在軸上,則實數(shù)的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的左右焦點分別為的,離心率為;過拋物線焦點的直線交拋物線于、兩點,當時, 點在軸上的射影為。連結并延長分別交、兩點,連接 的面積分別記為, ,設.

)求橢圓和拋物線的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了20161月至201812月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,判斷下列結論:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在7,8月;

4)各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn).

其中正確結論的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到.任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把“中間一段”去掉,這樣,原來的條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每一條小線段重復上述步驟,得到了16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科曲線.若要科赫曲線的長度達到原來的100倍,至少需要通過構造的次數(shù)是( ).(取

A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) k為常數(shù))

1)當時,求函數(shù)的最值;

2)若,討論函數(shù)的單調性

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條拋物線Cy22x,Ey22pxp0p1),MC上一點(異于原點O),直線OME的另一個交點為N.若過M的直線lE相交于A,B兩點,且△ABN的面積是△ABO面積的3倍,則p_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

同步練習冊答案