【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個(gè)命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是( )
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4
【答案】D
【解析】解:∵對于公差d>0的等差數(shù)列{an},an+1﹣an=d>0,∴命題p1:數(shù)列{an}是遞增數(shù)列成立,是真命題.
對于數(shù)列{nan},第n+1項(xiàng)與第n項(xiàng)的差等于 (n+1)an+1﹣nan=(n+1)d+an , 不一定是正實(shí)數(shù),
故p2不正確,是假命題.
對于數(shù)列 ,第n+1項(xiàng)與第n項(xiàng)的差等于 ﹣ = = ,不一定是正實(shí)數(shù),
故p3不正確,是假命題.
對于數(shù)列{an+3nd},第n+1項(xiàng)與第n項(xiàng)的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0,
故命題p4:數(shù)列{an+3nd}是遞增數(shù)列成立,是真命題.
故選D.
對于各個(gè)選項(xiàng)中的數(shù)列,計(jì)算第n+1項(xiàng)與第n項(xiàng)的差,看此差的符號,再根據(jù)遞增數(shù)列的定義得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校有一塊形如直角三角形ABC的空地,其中∠B為直角,AB長40米,BC長50米,現(xiàn)欲在此空地上建造一間健身房,其占地形狀為矩形,且B為矩形的一個(gè)頂點(diǎn),求該健身房的最大占地面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)討論函數(shù)極值點(diǎn)的個(gè)數(shù),并說明理由;
(2)若,成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn且 (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: ,且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)是數(shù)列的前項(xiàng)和,若對任意都成立.試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,點(diǎn),分別為橢圓的左右頂點(diǎn),點(diǎn)在上,且面積的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為的左焦點(diǎn),點(diǎn)在直線上,過作的垂線交橢圓于,兩點(diǎn).證明:直線平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O(0,0),A(0,b),B(a,a3),若△OAB為直角三角形,則必有( )
A.b=a3
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)有四個(gè)不同的零點(diǎn),從小到大依次為,,,,則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競賽成績(滿分100分)的莖葉圖,
其中有一個(gè)數(shù)字模糊不清,圖中用表示,規(guī)定成績不低于80分為優(yōu)秀.
(1)已知該12位同學(xué)競賽成績的中位數(shù)為78,求圖中的值;
(2)從該12位同學(xué)中隨機(jī)選3位同學(xué),進(jìn)行競賽試卷分析,
設(shè)其中成績優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com