【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競賽成績(滿分100分)的莖葉圖,

其中有一個數(shù)字模糊不清,圖中用表示,規(guī)定成績不低于80分為優(yōu)秀.

(1)已知該12位同學(xué)競賽成績的中位數(shù)為78,求圖中的值;

(2)從該12位同學(xué)中隨機選3位同學(xué),進(jìn)行競賽試卷分析,

設(shè)其中成績優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.

【答案】(1)7.

(2)分布列見解析;,.

【解析】分析:(1)先排除的情況;若,則中位數(shù),得,符合題意;(2) 的可能取值為,結(jié)合組合知識,利用古典概型概率公式求出各隨機變量對應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望.

詳解(1)若,則中位數(shù),不符合;若,則中位數(shù),得,符合,所以.

(2)因該12位同學(xué)競賽成績?yōu)閮?yōu)秀的有4人,

的所有可能取值為0,1,2,3,

,

,

所以的分布列為

0

1

2

3

的數(shù)學(xué)期望為

的方差為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面斜坐標(biāo)系中,,平面上任意一點關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若(其中,分別為與軸,軸同方向的單位向量),則點的斜坐標(biāo)為

(1)若點在斜坐標(biāo)系中的坐標(biāo)為,求點到原點的距離.

(2)求以原點為圓心且半徑為的圓在斜坐標(biāo)系中的方程.

(3)在斜坐標(biāo)系中,若直線交(2)中的圓于兩點,則當(dāng)為何值時,的面積取得最大值?并求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017514.第一屆一帶一路國際高峰論壇在北京舉行,為了解不同年齡的人對一帶一路關(guān)注程度,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計青少年中老年的人數(shù)之比為9:11

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注一帶一路是和年齡段有關(guān)?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問卷調(diào)查,在這9人中再取3人進(jìn)打面對面詢問,記選取的3人中一帶一路的人數(shù)為X,求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).

(1)若圓C1與圓C2相交于A,B兩點,且|AB|=,求點C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解居民喜歡中華傳統(tǒng)文化是否與年齡有關(guān),隨機調(diào)查了60位居民,相關(guān)數(shù)據(jù)統(tǒng)計如下表所示,

喜歡

不喜歡

合計

大于45歲

26

6

32

25歲至45歲

13

15

28

合計

39

21

60

(Ⅰ)是否有99.5%以上的人把握認(rèn)為喜歡中華傳統(tǒng)文化與年齡有關(guān)?

(Ⅱ)按年齡采用分層抽樣的方法從喜歡中華傳統(tǒng)文化的受調(diào)查居民中隨機抽取6人作進(jìn)一步了解,若從這6位居民中任選2人,求這2人的年齡均大于45歲的概率.

附:

0.025

0.010

0.005

0,001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角中,四邊形是邊長為2的正方形,,上的點,且平面.

(1)求證:;

(2)求二面角的余弦值;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的值域為,則稱區(qū)間為函數(shù)的一個“倒值區(qū)間”.定義在上的奇函數(shù),當(dāng)時,

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)上的“倒值區(qū)間”;

(Ⅲ)記函數(shù)在整個定義域內(nèi)的“倒值區(qū)間”為,設(shè),則是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個不同的交點?若存在,求出的值;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案