我們常用定義解決與圓錐曲線有關(guān)的問題.如“設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過左焦點(diǎn)F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ
,
同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請用類似的方法探索:設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過左焦點(diǎn)F1作傾斜角為θ的直線與雙曲線右支交于點(diǎn)A,左支交于點(diǎn)B,設(shè)|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請寫出與定值有關(guān)的結(jié)論是
 
..
考點(diǎn):類比推理,圓錐曲線的綜合
專題:探究型
分析:由題設(shè)條件知,本題要類比橢圓得出雙曲線的結(jié)論,由橢圓的定義與雙曲線的定義,一個是到兩定點(diǎn)距離的和為定值,一個是到兩個定點(diǎn)的距離的差為定值,由此可得出類比的結(jié)論,再作出證明
解答: 解:由題意,根據(jù)橢圓的定義與雙曲線的定義類比得“設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過左焦點(diǎn)F1作傾斜角為θ的直線與雙曲線右支交于點(diǎn)A,左支交于點(diǎn)B,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r
1
-
1
r
2
為定值”,證明如下:
不妨設(shè)A在x軸的上方,令在△ABC中,由雙曲線的定義及余弦定理得,(2a+r12=r12+4c2+4cr1cosθ,
r1=
b2
a+ccosθ

同理r2=
b2
a+ccos(π-θ)
=
b2
a+ccosθ
,
于是
1
r
1
-
1
r
2
=-
2a
b2

故答案為
1
r
1
-
1
r
2
=-
2a
b2
點(diǎn)評:本題考查以圓錐曲線為背景的類比推理,解題的關(guān)鍵是理解橢圓與雙曲線的定義,從中找出二者的對應(yīng)關(guān)系,給出類比結(jié)論,熟練掌握類比的規(guī)則,由定義得出類比結(jié)論是難點(diǎn)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0,1,2},從集合A中有放回地任取兩元素作為點(diǎn)P的坐標(biāo).
(1)寫出這個試驗的基本事件空間;
(2)求點(diǎn)P落在坐標(biāo)軸上的概率;
(3)求點(diǎn)P落在圓x2+y2=4內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域為集合A,函數(shù)g(x)=
3
x
-1
的定義域為集合B.
(1)求A∩B;
(2)若M={x|2x+p<0},且(A∩B)⊆M,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的首項a1=1002,公比q=
1
2
,記pn=a1•a2•a3…an,則pn達(dá)到最大值時,n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足
an+1
an
=
1
2
(n∈N)
,a1=1則
lim
n→∞
(a1+a2+a3+…+an)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)上的一個動點(diǎn),弦AB.AC所在的直線分別過焦點(diǎn)F1、F2,且當(dāng)AB⊥AC時,恰好有|
AF1
|=2|
AF2
|
2|
AF1
|=|
AF2
|

(1)求雙曲線C的離心率
(2)設(shè)
AF1
=λ1
F1B
,
AF2
=λ2
F2C
,試判斷λ12是否為定值?若是,求出該定值,若不是,則求出λ12的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2-ax+a2-3=0至少有一個正根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(2x+1)4=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)設(shè)計一項綜合學(xué)科的考查方案:考生從6道備選題中一次性隨機(jī)抽取三道題,按照題目要求獨(dú)立完成全部實驗操作,已知在6道備選題中,考生甲有4道題能正確完成,兩道題不能正確完成;考生乙每道題正確完成的概率都是
2
3
,且每道題正確完成與否互不影響.
(1)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列;
(2)分別求甲、乙兩考生正確完成題數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案