精英家教網 > 高中數學 > 題目詳情
過拋物線y2=2x的焦點F的直線交拋物線于A、B兩點,則
1
|AF|
+
1
|BF|
=
 
考點:拋物線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:根據拋物線方程可求得焦點坐標和準線方程,設過F的直線方程,與拋物線方程聯立,整理后,設A(x1,y1),B(x2,y2)根據韋達定理可求得x1x2的值,又根據拋物線定義可知,|AF|=x1+
1
2
,|BF|=x2+
1
2
代入
1
|AF|
+
1
|BF|
答案可得.
解答: 解:易知F坐標(
1
2
,0)準線方程為x=-
1
2

設過F點直線方程為y=k(x-
1
2

代入拋物線方程,得 k2(x-
1
2
2=2x.
化簡后為:k2x2-(k2+2)x+
1
4
k2=0.
設A(x1,y1),B(x2,y2
則有x1+x2=
k2+2
k2
,x1x2=
1
4

根據拋物線性質可知,|AF|=x1+
1
2
,|BF|=x2+
1
2

1
|AF|
+
1
|BF|
=
x1+x2+1
(x1+
1
2
)(x2+
1
2
)
=2
故答案為:2.
點評:本題主要考查拋物線的應用和拋物線定義.對于過拋物線焦點的直線與拋物線關系,常用拋物線的定義來解決.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知一個半徑為
3
的球有一個內接正方體(即正方體的頂點都在球面上),求這個球的球面面積與其內接正方體的全面積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aex+
1
2
x2+bx,曲線y=f(x)在點(0,f(0))處的切線為y-1=0.
(1)求f(x)的解析式及單調區(qū)間;
(2)若f(x)≥
1
2
x2+x+m,求m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)在第一象限內的點,F為其右焦點,點A關于原點O的對稱點為B,若AF⊥BF,設∠ABF=α,且α∈[
π
12
,
π
6
],則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:e=cosθ+isinθ,其中i是虛數單位,θ∈R,且實數指數冪的運算性質對都e適應.若x=C
 
0
3
cos3
π
12
-C
 
2
3
cos
π
12
sin2
π
12
,y=C
 
1
3
cos2
π
12
sin
π
12
-C
 
3
3
sin3
π
12
,則x+yi
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若(1+2ai)i=1-bi,其中a、b∈R,i是虛數單位,則|a+bi|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

以點(0,0)為圓心,r為半徑的圓的曲線方程為x2+y2=r2.類比推出:以點(0,0,0)為球心,r為半徑的球面的方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=lg(
1
2
+sinx)的定義域為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知p:
2x-1
≤1,q:(x-a)(x-a-1)≤0.若p是q的充分不必要條件,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案