【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補全函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)(x∈R)的遞增區(qū)間;

(2)寫出函數(shù)f(x)(x∈R)的值域;
(3)寫出函數(shù)f(x)(x∈R)的解析式.

【答案】
(1)解:根據(jù)偶函數(shù)的圖象關(guān)于y軸對稱,作出函數(shù)在R上的圖象,

結(jié)合圖象可得函數(shù)的增區(qū)間為(﹣1,0)、減區(qū)間為(1,+∞)


(2)解:結(jié)合函數(shù)的圖象可得,當(dāng)x=1,或 x=﹣1時,函數(shù)取得最小值為﹣1,

函數(shù)沒有最大值,故函數(shù)的值域為[﹣1,+∞)


(3)解:當(dāng)x>0時,﹣x<0,再根據(jù)x≤0時,f(x)=x2+2x,

可得f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x.

再根據(jù)函數(shù)f(x)為偶函數(shù),可得f(x)=x2﹣2x.

綜上可得,f(x)=


【解析】(1)根據(jù)偶函數(shù)的圖象關(guān)于y軸對稱,作出函數(shù)在R上的圖象,結(jié)合圖象可得函數(shù)的增區(qū).(2)結(jié)合函數(shù)的圖象可得函數(shù)的值域.(3)依據(jù)條件求得當(dāng)x>0時,f(x)的解析式,再依據(jù)函數(shù)的奇偶性得到f(x)在R上的解析式.
【考點精析】通過靈活運用函數(shù)的值域和函數(shù)圖象的作法,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的;圖象的作法與平移:①據(jù)函數(shù)表達(dá)式,列表、描點、連光滑曲線;②利用熟知函數(shù)的圖象的平移、翻轉(zhuǎn)、伸縮變換;③利用反函數(shù)的圖象與對稱性描繪函數(shù)圖象即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實數(shù)a的取值范圍是(
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:方程 =1表示雙曲線,命題q:x∈(0,+∞),x2﹣mx+4≥0恒成立,若p∨q是真命題,且綈(p∧q)也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面 ,且

(Ⅰ)記線段的中點為,在平面內(nèi)過點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐V﹣ABCD中,底面ABCD是正方形,側(cè)棱VA⊥底面ABCD,點E為VA的中點.
(Ⅰ)求證:VC∥平面BED;
(Ⅱ)求證:平面VAC⊥平面BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請200名同學(xué),每人隨機寫下一個都小于1的正實數(shù)對(xy);再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(xy)的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計的值.假如統(tǒng)計結(jié)果是m=56,那么可以估計__________.(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最大值和最小值;

(2)設(shè)曲線軸正半軸的交點為處的切線方程為,求證:對于任意的正實數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊答案