【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),且對任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),則實數(shù)a的取值范圍是(
A.[3,+∞)
B.(0,3]
C.[ ,3]
D.(0, ]

【答案】D
【解析】解:∵函數(shù)f(x)=x2﹣2x的圖象是開口向上的拋物線,且關(guān)于直線x=1對稱
∴x1∈[﹣1,2]時,f(x)的最小值為f(1)=﹣1,最大值為f(﹣1)=3,
可得f(x1)值域為[﹣1,3]
又∵g(x)=ax+2(a>0),x2∈[﹣1,2],
∴g(x)為單調(diào)增函數(shù),g(x2)值域為[g(﹣1),g(2)]
即g(x2)∈[2﹣a,2a+2]
∵對任意的x1∈[﹣1,2]都存在x2∈[﹣1,2],使得g(x1)=f(x2
,
∴0<a≤ ,
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當(dāng)|a|≥2時,M(a,b)≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的準線為,取過焦點且平行于軸的直線與拋物線交于不同的兩點,過作圓心為的圓,使拋物線上其余點均在圓外,且. 

(Ⅰ)求拋物線和圓的方程;

(Ⅱ)過點作直線與拋物線和圓依次交于,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)為(﹣∞,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于統(tǒng)計數(shù)據(jù)的分析,有以下幾個結(jié)論,其中正確的個數(shù)為( 。
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都減去同一個數(shù)后,平均數(shù)與方差均沒有變化;
②在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個變量相關(guān)性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4—4;坐標系與參數(shù)方程)已知曲線的極坐標方程是,曲線經(jīng)過平移變換得到曲線;以極點為原點,極軸為軸正方向建立平面直角坐標系,直線l的參數(shù)方程是 (為參數(shù)).

(1)求曲線, 的直角坐標方程;

(2)設(shè)直線l與曲線交于、兩點,點的直角坐標為(2,1),若,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2﹣mx(m>0)在區(qū)間[0,2]上的最小值記為g(m)
(1)若0<m≤4,求函數(shù)g(m)的解析式;
(2)定義在(﹣∞,0)∪(0,+∞)的函數(shù)h(x)為偶函數(shù),且當(dāng)x>0時,h(x)=g(x),若h(t)>h(4),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為(
·(1)小明離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
·(2)小明騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間;
·(3)小明出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速.

A.(4)(1)(2)
B.(4)(2)(3)
C.(4)(1)(3)
D.(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補全函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)(x∈R)的遞增區(qū)間;

(2)寫出函數(shù)f(x)(x∈R)的值域;
(3)寫出函數(shù)f(x)(x∈R)的解析式.

查看答案和解析>>

同步練習(xí)冊答案