10.若函數(shù)f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 對任意x1,x2∈R(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實數(shù)a的取值范圍為(  )
A.(-∞,1]B.(1,5)C.[1,5)D.[1,4]

分析 若對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則函數(shù)f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 為減函數(shù),進而根據(jù)分段函數(shù)單調(diào)性的定義,可得答案.

解答 解:若對任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
則函數(shù)f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 為減函數(shù),
則$\left\{\begin{array}{l}{4-4(a+1)+3a≥2(a-5)-2}\\{a+1≥2}\\{a-5<0}\end{array}\right.$,
解得:a∈[1,4],
故選:D.

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,熟練掌握并正確理解分段函數(shù)單調(diào)性的定義,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=($\frac{1}{2}$)|x|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的首項a1=1,前n項和為Sn,且Sn+1-2Sn-n-1=0(n∈N*).
(Ⅰ) 求證:數(shù)列{an+1}為等比數(shù)列;
(Ⅱ) 令bn=nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a<1,那么( 。
A.1<aa<abB.aa<ab<1C.ab<aa<1D.1ab<aa

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下命題中,正確命題的序號是①③.
①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點的充要條件是f(1)•f(2)<0;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值等于$\frac{1}{2}$;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個單位后,得到的圖象對應(yīng)的解析式為y=sin(4-2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{\sqrt{2+x}}$+(x-1)0的定義域是{x|x>-2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\root{4}{a-2}$+(a-4)0有意義,則a的取值范圍是( 。
A.a≥2B.2≤a<4或a>4C.a≠2D.a≠4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{3}-3x+a,x>0}\end{array}\right.$的值域為[0,+∞),則實數(shù)a的取值范圍是( 。
A.2≤a≤3B.a>2C.a≥2D.2≤a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,已知b=4,c=6,C=2B.
(1)求cosB的值;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案