【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.
【答案】
(1)解:當(dāng)n≥16時,y=16×(10﹣5)=80;
當(dāng)n≤15時,y=5n﹣5(16﹣n)=10n﹣80,得:
(2)解:(i)X可取60,70,80,當(dāng)日需求量n=14時,X=60,n=15時,X=70,其他情況X=80,
P(X=60)= = =0.1,P(X=70)= 0.2,P(X=80)=1﹣0.1﹣0.2=0.7,
X的分布列為
X | 60 | 70 | 80 |
P | 0.1 | 0.2 | 0.7 |
EX=60×0.1+70×0.2+80×0.7=76
DX=162×0.1+62×0.2+42×0.7=44
(ii)購進(jìn)17枝時,當(dāng)天的利潤的期望為y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4
∵76.4>76,∴應(yīng)購進(jìn)17枝
【解析】(1)根據(jù)賣出一枝可得利潤5元,賣不出一枝可得賠本5元,即可建立分段函數(shù);(2)(i)X可取60,70,80,計算相應(yīng)的概率,即可得到X的分布列,數(shù)學(xué)期望及方差;(ii)求出進(jìn)17枝時當(dāng)天的利潤,與購進(jìn)16枝玫瑰花時當(dāng)天的利潤比較,即可得到結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有云龍山,戶部山,子房山河九里山等四大名山,一位游客來該地區(qū)游覽,已知該游客游覽云龍山的概率為,游覽戶部山、子房山和九里山的概率都是,且該游客是否游覽這四座山相互獨立.
(1)求該游客至少游覽一座山的概率;
(2)用隨機(jī)變量表示該游客游覽的山數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)為曲線上任一點,過點作曲線的切線(為切點),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )為偶函數(shù).設(shè)集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,記f(x)在A上的最大值與最小值分別為M,N,求M﹣N;
(2)若對任意的實數(shù)t,總存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)對x∈[0,1]恒成立,試求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)若關(guān)于x的不等式﹣ +2x>mx的解集為(0,2),求m的值.
(2)在△ABC中,sinA= ,cosB= ,求cosC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點處的切線與直線平行,求實數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若時,在定義域內(nèi)總有成立,試求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;
(2)設(shè)是函數(shù)的兩個極值點,若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
寫出曲線的極坐標(biāo)的方程以及曲線的直角坐標(biāo)方程;
若過點(極坐標(biāo))且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com