【題目】已知橢圓:的左焦點,離心率為,點為橢圓上任一點,且的最小值為.
(1)求橢圓的方程;
(2)若直線過橢圓的左焦點,與橢圓交于兩點,且的面積為,求直線的方程.
【答案】(1) (2)或.
【解析】
(1)設橢圓的標準方程為:1(a>b>0),由離心率為,點P為橢圓C上任意一點,且|PF|的最小值為1,求出a2=2,b2=1,由此能求出橢圓C的方程;(2)設的方程為:,代入得:,由弦長公式與點到線的距離公式分別求得,由面積公式得的方程即可求解
(1)設橢圓的標準方程為:1(a>b>0),
∵離心率為,∴,∴a,
∵點P為橢圓C上任意一點,且|PF|的最小值為1,
∴c=1,∴a2=b2+c2=b2+1,
解得a2=2,b2=1,
∴橢圓C的方程為1.
(2)因,與軸不重合,故設的方程為:,
代入得:,
其恒成立,設,則有,
又到的距離
,解得,
的方程為:或.
科目:高中數(shù)學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是0.8,現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該運動員射擊4次,至少擊中3次的概率為( )
7527 0293 7140 9857
0347 4373 8636 6947
1417 4698 0371 6233
2616 8045 6011 3661
9597 7424 7610 4281
A.0.852B.0.8192C.0.8D.0.75
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設;
(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設;
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)z(單位:個)關于x的回歸方程.
(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關于x的線性回歸方程(參考統(tǒng)計量:);
(2)試估計:①該縣第一年養(yǎng)殖山羊多少萬只?
②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點,點,動圓與軸相切于點,過點的直線與圓相切于點,過點的直線與圓相切于點(均不同于點),且與交于點,設點的軌跡為曲線.
(1)證明:為定值,并求的方程;
(2)設直線與的另一個交點為,直線與交于兩點,當三點共線時,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)擲兩枚質(zhì)地均勻的骰子,計算點數(shù)和為7的概率;
(2)利用隨機模擬的方法,試驗120次,計算出現(xiàn)點數(shù)和為7的頻率;
(3)所得頻率與概率相差大嗎?為什么會有這種差異?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com